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a b s t r a c t

We introduce and analyze a general class of singularly perturbed linear hybrid systemswith both switches
and impulses, in which the slow or fast nature of the variables can be mode-dependent. This means that,
at switching instants, some of the slow variables can become fast and vice-versa. Firstly, we show that
using a mode-dependent variable reordering we can rewrite this class of systems in a form in which
the variables preserve their slow or fast nature over time. Secondly, we establish, through singular
perturbation techniques, an upper bound on the minimum dwell-time ensuring the overall system’s
stability. Remarkably, this bound is the sum of two terms. The first term, which can be equal to zero,
only depends on the matrices of the reduced order linear hybrid system describing the slow dynamics
and corresponds to an upper bound on theminimum dwell time ensuring the stability of that system. The
order of magnitude of the second term is determined by that of the parameter defining the ratio between
the two time-scales of the singularly perturbed system. We show that the proposed framework can also
take into account the change of dimension of the state vector at switching instants. Numerical illustrations
complete our study.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Systems characterized by processes that evolve on different
time-scales are often encountered in biology (Chen &Aihara, 2002;
Hodgkin & Huxley, 1952) but are also present in engineering
(Malloci, 2009; Sanfelice & Teel, 2011). In this case, the standard
stability analysis becomesmore difficult and singular perturbation
theory (Khalil, 2001; Kokotović, Khalil, & O’Reilly, 1999) has to be
used. This theory is based on Tikhonov approach that proposes
to approximate the dynamics by decoupling the slow dynamical
processes from the faster ones. The stability analysis is done sep-
arately for each time scale and under appropriate assumptions
one can conclude on the stability of the overall system. Significant
results related to stability analysis and approximation of solutions
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of singularly perturbed systems can be found in Balachandra and
Sethna (1975), Nesic and Teel (2001) and Teel, Moreau, and Nesic
(2003). We also note that singular perturbation theory was used
to study the behavior of piecewise smooth systems with state trig-
gered switches (Fiore, Hogan, & di Bernardo, 2016; Llibre, da Silva,
& Teixeira, 2009).

Another feature that characterizes many physical systems is
the presence of discrete events that occur during the continuous
evolution. These events include abrupt changes of dynamics or
instantaneous state jumps, which lead to the classes of switched
systems or impulsive systems, respectively. Stability analysis and
stabilization of singularly perturbed linear switched systems are
considered in Alwan, Liu, and Ingalls (2008) and Malloci, Daafouz,
and Iung (2009). Interestingly, it is shown in Malloci, Daafouz, and
Iung (2009) that even though the switched dynamics on each time
scale are stable for all switching signals, the overall system may
be destabilized by fast switching signals. Clearly, this is in contrast
with classical results on continuous singularly perturbed linear
systems (Kokotović et al., 1999) and is a motivation for developing
dedicated techniques for stability analysis of singularly perturbed
hybrid systems. Stability analysis of singularly perturbed impul-
sive systems is considered in Abdelrahim, Postoyan, and Daafouz
(2015) and Simeonov and Bainov (1988). More general singularly
perturbed hybrid systems can involve both switches and impulses.
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A stability result for this class of systems can be found in Sanfelice
and Teel (2011). In these works, the slow or fast nature of the
state variable does not change when an event (switch or impulse)
occurs. In this paper we introduce and analyze a class of singularly
perturbed linear hybrid systems in which, at switching instants,
slow variables can become fast and vice-versa. Our framework also
includes the analysis of singularly perturbed linear systems with
or without switches and/or impulses. Moreover, taking advantage
of the linear dynamics under study, we go beyond the results in
Sanfelice and Teel (2011) by characterizing the required dwell-
time in terms of the parameter defining the ratio between the two
time-scales. Although the technique in Sanfelice and Teel (2011)
can be adapted to take into account the change of the slow or fast
nature of the variables, our results are intrinsically different due
to the different way to obtain the reduced order system. Indeed,
for the linear switching system presented in Malloci, Daafouz, and
Iung (2009) we obtain a reduced order system which is stable for
any switching rule while using the method in Sanfelice and Teel
(2011) the reduced order system is stable only for switching rules
satisfying a dwell-time conditionwhich is independent of the ratio
between the two time-scales. Consequently, we are able to char-
acterize more precisely the size of the dwell-time guaranteeing
overall system stability.

The class of dynamical systems discussed in this paper is moti-
vated by an industrial application in steel production. The objective
in rolling mills is to reduce the thickness of a strip and this goal
is reached by maintaining the strip in a straight line and close to
the mill axis. When each stand is linked to the others by the strip
traction, there is no discontinuity in the model. The system has a
two time scale nature as there is a slow dynamics corresponding
to the lateral displacement of the strip after each stand and a fast
dynamics corresponding to the angle between the strip and the
mill axis. The corresponding control problem can be treated using
classical linear techniques as it is enough from a practical point of
view to consider small deviations around an ideal operating point
(see Malloci, Daafouz, Iung, Bonidal, and Szczepanski, 2010 and
references therein). The situation is different in the last phase of the
rolling process called the tail end phase and where the strip leaves
the stands one after the other. Traction is lost each time the strip
leaves a stand and this increases the difficulty to guide the strip as
it is free to move in all directions. There are several difficulties in
this phase. The first one is related to model discontinuities. Each
time the strip leaves a stand the system dynamics changes and
switching occurs. Moreover, the tail end phase is very short, the
switchings are very fast and stability of all subsystems is not a
sufficient condition to guarantee the stability of the whole system.
The second difficulty is related to the changes in the nature of
the dynamics after switching. The angle which was a fast variable
becomes a slow variable and this change occurs at each time the
strip leaves a stand. A system with this behavior can be defined as
a switched systemwithmultiple time scales, changes in the nature
of the state variables and changes in the dimension of the state
vector (Malloci, Daafouz, Iung, Bonidal, & Szczepanski, 2009).

Starting from the above motivation, we introduce and analyze
a general class of singularly perturbed linear hybrid systems with
mode-dependent nature of the state variable in which the se-
quence of discrete events is time-dependent. Although some pre-
liminary results have been presented in Rejeb, Morărescu, Girard,
and Daafouz (2016), the main contributions of the current work
are:

• a new class of singularly perturbed hybrid systems and a
procedure to rewrite such systems as linear hybrid singu-
larly perturbed systems where the nature of variables does
not change at switching instants, both cases of fixed and
variable dimensions of the slow and fast state vectors are
considered;

• a new approach for stability analysis of singularly perturbed
linear hybrid systems with both switches and impulses;

• the derivation of an upper bound on the minimal dwell-
time between two events that ensures the stability of the
singularly perturbed linear hybrid system.

It is noteworthy that, this bound is given as the sum of two terms.
The first one corresponds to an upper bound on the minimum
dwell-time ensuring the stability of the reduced order linear hybrid
system describing the slow dynamics. The order of magnitude of
the second term is determined by that of the parameter ε defining
the ratio between the two time-scales of the singularly perturbed
system. In particular, it follows that when the reduced order sys-
tem has a common quadratic Lyapunov function, the first term is
zero and the minimum dwell-time ensuring the stability of the
overall system goes to zero as fast as ε or −ε ln(ε) when the time
scale parameter ε goes to zero.

Basically, we combine the classical singular perturbation theory
(Kokotović et al., 1999) with Lyapunov function arguments for
hybrid systems (see Goebel, Sanfelice, & Teel, 2012 for details). Our
results clearly differ from existing ones on singularly perturbed
linear hybrid systems that we mentioned previously: Malloci,
Daafouz, and Iung (2009) deals with the existence of common
quadratic Lyapunov functions and thus characterizes systems that
are stable without dwell-time assumption; the condition on the
dwell-time established in Alwan et al. (2008) does not present a
clear separation between the slowand fast dynamics of the system;
and in Abdelrahim et al. (2015), Sanfelice and Teel (2011) and
Simeonov and Bainov (1988) the stability is established under a
dwell-time condition where the dwell-time does not explicitly
depend on the time-scale parameter.

The paper is organized as follows : Section 2 describes the
hybrid system model in the singular perturbation form and in-
troduces the relevant notations. In this section, we also introduce
a mode-dependent reordering of the state components allowing
to rewrite the system in a form in which the variables preserve
their slow or fast nature over time. Section 3 is devoted to new
preliminary results concerning the stability analysis of singularly
perturbed linear systems without switches or jumps. Section 4.1
presents the main results along with their Lyapunov-based proofs.
These results give stability conditions and establish an upper-
bound on the minimum dwell-time ensuring the stability of the
system. An extension to the case of mode-dependent dimension of
the state-vector is provided in Section 4.3. To illustrate the results,
we provide in Section 5 a dwell-time analysis and a numerical
example in the particular case of scalar fast and slow dynamics
with only two switchingmodes. Some concluding remarks end the
paper.

Notation

Throughout this paper, R+ , Rn and Rn×m denote respectively,
the set of nonnegative real numbers, the n dimensional Euclidean
space and the set of all n × m real matrices. The identity matrix of
dimension n is denoted by In. We also denote by 0n,m ∈ Rn×m the
matrix whose components are all 0. For a matrix A ∈ Rn×n, ∥A∥

denotes the spectral norm i.e. induced 2 norm. A ≥ 0 (A ≤ 0)
means that A is positive semidefinite (negative semidefinite). We
write A⊤ and A−1 to respectively denote the transpose and the
inverse of A. For a symmetric matrix A ≥ 0, A

1
2 is the unique

symmetric matrix B ≥ 0 such that B2
= A. The matrix A is said

to be Hurwitz if all its eigenvalues have negative real parts. A is
said to be Schur if all its eigenvalues have modulus smaller than
one. The matrix A is said to be positive if all its coefficients are
positive. We also use x(t−) = limδ→0, δ>0x(t − δ). Given a function
η : (0, ε∗) → R, we say that η(ε) = O(ε) if and only if there exist
ε0 ∈ (0, ε∗) and c > 0, such that for all ε ∈ (0, ε0), |η(ε)| ≤ cε.
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