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H I G H L I G H T S

• An analysis-forecast system for wind speed uncertainty modeling is proposed.

• Recurrence analysis is developed to study the characteristics of wind speed.

• Feature selection is developed to determine optimal system input.

• An improved multi-objective optimizer is first proposed to optimize the system further.

• The proposed system shows a greater advantage over benchmark models considered.
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A B S T R A C T

The uncertainty analysis and modeling of wind speed, which has an essential influence on wind power systems,
is consistently considered a challenging task. However, most investigations thus far were focused mainly on
point forecasts, which in reality cannot facilitate quantitative characterization of the endogenous uncertainty
involved. An analysis-forecast system that includes an analysis module and a forecast module and can provide
appropriate scenarios for the dispatching and scheduling of a power system is devised in this study; this system
superior to those presented in previous studies. In order to qualitatively and quantitatively investigate the un-
certainty of wind speed, recurrence analysis techniques are effectively developed for application in the analysis
module. Furthermore, in order to quantify the uncertainty accurately, a novel architecture aimed at uncertainty
mining is devised for the forecast module, where a non-parametric model optimized by an improved multi-
objective water cycle algorithm is considered a predictor for producing intervals for each mode component after
feature selection. The results of extensive in-depth experiments show that the devised system is not only superior
to the considered benchmark models, but also has good potential practical applications in wind power systems.

1. Introduction

In recent years, given its advantages, such as renewability and
cleanness, the comprehensive exploitation and utilization of wind en-
ergy has made it extensively socially and economically effective. More
importantly, it is self-evident in a comparison of wind energy and
conventional energy, which is a significant cause of global warming and
atmospheric contamination, that wind power is one of the most pro-
mising energy sources available worldwide. Thus, wind energy is a
greatly preferred energy resource in many parts of the world [1]. For
example, wind power may become the second largest resource for
generating electricity in China by 2050 [2]. However, in practice, the

efficient and comprehensive development of wind power systems is
considerably restricted because of the intrinsic randomness and inter-
mittency of wind speed, which presents a significant challenge in terms
of electrical network operation and management, in particular wind
power integration (WPI). Accordingly, the effective analysis and accu-
rate forecasting of wind speed not only constitute a challenging task,
but are also an emphatic concern for those who make decisions-related
to wind farms. It is crucial both to design more appropriate and efficient
wind farms and to further determine the nonlinear dynamic pattern of
wind speed in order to better manage and minimize the operational
risks.

The analysis and investigation of the dynamic characteristics, in
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particular the predictability, of nonlinear systems are important for
forecast modeling. However, most of the studies in the literature placed
emphasis mainly on certain basic statistics, such as the maximum,
minimum, average, and standard deviation [3,4]. Further, the Lya-
punov exponent, complexity, skewness, kurtosis, and emergence of
wind speed were investigated in Ref. [5]. Effective studies on the sta-
tistical distribution of wind speed, which is usually assumed to be a
Weibull distribution function, in order to further determine wind speed
patterns were reported in Refs. [6–8]. Evidently, these statistics do not
suffice to reveal the profound characteristics of complex nonlinear
systems, in particular highly volatile wind speed series. The recurrence
plot and recurrence quantification analysis, which is essentially based
on chaos theory, as an effective technique for studying complicated
nonlinear systems, were developed in the field of wind speed fore-
casting. In the study reported in Ref. [9], wind speed series were ana-
lyzed using recurrence plots. However, this analysis was limited to re-
currence plots, and is still not sufficient to quantitatively investigate the
system behaviors of wind speed series. In order to further remedy the
defect of recurrence plots that they lack quantitative analyses, a re-
currence quantification analysis of recurrence plots, which can also be
used to visualize the trajectories in phase space, was effectively de-
veloped in this study in order to investigate in greater depth the

dynamic characteristics and predictability of wind speed series and the
corresponding mode components.

Accurate modeling of wind speed has important practical sig-
nificance for wind energy development and utilization in many forms,
such as wind turbines that convert wind power into kinetic energy and
mean flow acoustic engines that convert the mean flow power into
acoustic power [10–12]. However, given the complex dynamic pattern
of wind speed, the design of an effective and scientific wind speed
forecast model (WSFM) is consistently attracting considerable research
attention. In general, the mainstream studies of WSFMs can be sys-
tematically categorized into those using physics and statistical ap-
proaches [13] and artificial intelligence methods. Rich physics models
involving wind speed forecasts (WSFs) were systematically introduced
in Refs. [14–18]. Technically, these models in general involve compu-
tational fluid dynamics in order to simulate the atmosphere based on
different grid designs [13]. In contrast to physics models, the alter-
native WSFMs are based on statistical modeling and machine learning
theories, which are convenient for implementing the modeling and si-
mulation of wind speed forecasting because of their accessibility and
excellent local prediction ability. In earlier research on WSFMs, the
traditional statistical models, which usually consist of an autoregressive
model (AR) [19], autoregressive integrated moving average model

Nomenclature

WPI wind power integration
WSFM wind speed forecast model
WSF wind speed forecast
AR autoregressive model
ARIMA autoregressive integrated moving average model
ARCH autoregressive conditional heteroskedasticity model
ANNs artificial neural networks
PSO particle swarm optimization
GA genetic algorithm
LUBE lower upper bound estimation
ELM extreme learning machine
LLFNN local linear fuzzy neural network
RBFNN radial basis function neural network
WNN wavelet neural network
MIMO-LSSVM multi-input multi-output least squares support vector

machine
WCA water cycle algorithm
IMOWCA improved multi-objective water cycle algorithm
EMD empirical mode decomposition
EEMD ensemble empirical mode decomposition
CEEMD complete ensemble empirical mode decomposition
CEEMDAN complete ensemble empirical mode decomposition with

adaptive noise
IMFs intrinsic mode functions
MIMO-LSSVM multi-input multi-output least squares support vector

machine
WCA water cycle algorithm
RR recurrence rate
DET determinism
ENTR entropy
L average diagonal line length
→
X River

i
the position of river

→
X Sea

i
the position of sea

RR recurrence rate
DET determinism
ENTR entropy
→
X Stream

i
the position of stream

Randn an uniformly distributed random numbers in [1,1]

C a constant in Eqs. (13)–(15) and (21)
zi actual observed value of wind speed
τ delay time
m embedding dimension
ϖ time window
‖·‖ a norm
diag diagonal matrix
LB lower bound of variables
UB upper bound of variables
max_iteration maximum iteration number
ω adaptive inertia weight
GD generational distance
SP spacing
CP coverage probability
AW average width
AWD accumulated width deviation
Li lower bound of i-th prediction interval
Ui upper bound of i-th prediction interval
ci a Boolean value
ς predefined threshold in recurrence analysis
P(l) the probability to find a diagonal line of length l in the

recurrence plot
ϕΦ(·)/ (·) the nonlinear mapping

α interval width coefficient
Ii the i-th prediction interval
rand a uniformly distributed random number in [0,1]
Nsr the number of streams
Npop the number of raindrops
dmax a small number close to zero
Θ (·) heavisible function
Costn the fitness value of the n-th raindrop
T training dataset
MLYE maximum lyapunov exponent
dmax the tolerance in IMOWCA
Std. standard deviation
S t( )mean a statistic shown in Eq. (7)

S tΔ ( )mean a statistic shown in Eq. (8)
Scor t( ) a statistic shown in Eq. (9)
R p input space with the dimension of p
MLYE maximum lyapunov exponent
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