
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 2171–2179

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.203

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10.1016/j.procs.2017.05.203 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

Performance Analysis of Parallel Python Applications

Michael Wagner1, Germán Llort1,2, Estanislao Mercadal1,2, Judit Giménez1,2,
and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
michael.wagner@bsc.es

2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Abstract
Python is progressively consolidating itself within the HPC community with its simple syntax,
large standard library, and powerful third-party libraries for scientific computing that are es-
pecially attractive to domain scientists. Despite Python lowering the bar for accessing parallel
computing, utilizing the capacities of HPC systems efficiently remains a challenging task, after
all. Yet, at the moment only few supporting tools exist and provide merely basic information in
the form of summarized profile data. In this paper, we present our efforts in developing event-
based tracing support for Python within the performance monitor Extrae to provide detailed
information and enable a profound performance analysis. We present concepts to record the
complete communication behavior as well as to capture entry and exit of functions in Python
to provide the according application context. We evaluate our implementation in Extrae by
analyzing the well-established electronic structure simulation package GPAW and demonstrate
that the recorded traces provide equivalent information as for traditional C or Fortran applica-
tions and, therefore, offering the same profound analysis capabilities now for Python, as well.

Keywords: Performance Analysis, Tracing, Tools, HPC, Parallel, Python, Extrae, Paraver

1 Introduction

While the HPC landscape of programming languages is essentially monopolized by Fortran
and C, other programming languages that are popular outside the HPC community are striv-
ing to gain ground. Python is a widely-used, high-level programming language with the self-
proclaimed goal to allow fast and easy program development. Among others, it features are
a simple syntax, dynamic data types, powerful data structures and a large standard library.
Combined with third party libraries for scientific computing, such as NumPy [16] and SciPy
[14], it is well comprehensible that Python is especially attractive to domain scientists.

For parallel computing with Python exist, among others, packages from the Python standard
library like the multiprocessing module and external Python interfaces to parallel runtimes

1

This space is reserved for the Procedia header, do not use it

Performance Analysis of Parallel Python Applications

Michael Wagner1, Germán Llort1,2, Estanislao Mercadal1,2, Judit Giménez1,2,
and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
michael.wagner@bsc.es

2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Abstract
Python is progressively consolidating itself within the HPC community with its simple syntax,
large standard library, and powerful third-party libraries for scientific computing that are es-
pecially attractive to domain scientists. Despite Python lowering the bar for accessing parallel
computing, utilizing the capacities of HPC systems efficiently remains a challenging task, after
all. Yet, at the moment only few supporting tools exist and provide merely basic information in
the form of summarized profile data. In this paper, we present our efforts in developing event-
based tracing support for Python within the performance monitor Extrae to provide detailed
information and enable a profound performance analysis. We present concepts to record the
complete communication behavior as well as to capture entry and exit of functions in Python
to provide the according application context. We evaluate our implementation in Extrae by
analyzing the well-established electronic structure simulation package GPAW and demonstrate
that the recorded traces provide equivalent information as for traditional C or Fortran applica-
tions and, therefore, offering the same profound analysis capabilities now for Python, as well.

Keywords: Performance Analysis, Tracing, Tools, HPC, Parallel, Python, Extrae, Paraver

1 Introduction

While the HPC landscape of programming languages is essentially monopolized by Fortran
and C, other programming languages that are popular outside the HPC community are striv-
ing to gain ground. Python is a widely-used, high-level programming language with the self-
proclaimed goal to allow fast and easy program development. Among others, it features are
a simple syntax, dynamic data types, powerful data structures and a large standard library.
Combined with third party libraries for scientific computing, such as NumPy [16] and SciPy
[14], it is well comprehensible that Python is especially attractive to domain scientists.

For parallel computing with Python exist, among others, packages from the Python standard
library like the multiprocessing module and external Python interfaces to parallel runtimes

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.203&domain=pdf

2172	 Michael Wagner et al. / Procedia Computer Science 108C (2017) 2171–2179Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

like MPI4Py [9] for message passing. MPI4Py provides bindings of MPI [12] with an object-
oriented interface similar to C++ and allows the communication of arbitrary Python objects.
In addition, MPI4Py supports optimized communication of NumPy arrays with a speed close
to that of communication directly in C or Fortran.

Combining the benefits of Python (e.g. fast development and high-level algorithms) with
an implementation of performance critical parts in C (e.g. main numerical kernels with BLAS,
LAPACK, NumPy; and MPI communication with MPI4Py) has been the most successful ap-
proach in HPC computing, so far. For instance, GPAW [10] has demonstrated about 25% peak
performance and good scaling up to tens of thousands of cores [11].

Despite the fact that Python is consolidating itself more and more in the HPC world, suit-
able tool support is still scarce. Currently, for the purpose of performance analysis there exists
some basic profiling support in the form of summarized function-level or line-level timing infor-
mation provided, for instance, by the Python modules profile and cProfile [6]. However, more
advanced tool support, such as event-based tracing, is still missing. In contrast to summarized
profiling, event-based tracing records runtime events, such as entering/leaving a function or
communication operations, individually. As a result, while profiles may lack crucial informa-
tion and hide dynamically occurring effects, event-based tracing allows capturing the dynamic
interaction between thousands of concurrent processing elements and enables the identifica-
tion of outliers from the regular behavior. Thus, event-based tracing allows a more detailed
and profound analysis and assists developers not only in identifying performance issues within
their applications but also in understanding their behavior on the complex and increasingly
heterogeneous HPC systems.

In this paper, we share our efforts in developing event-based tracing support for Python
within the performance monitor Extrae [2]. Our contributions in this work are, first, concepts
to capture entry and exit of functions in Python; second, a method to record the complete
communication behavior for Python applications using either MPI4Py or custom MPI bindings;
and, third, we demonstrate the capabilities of our prototype implementation with GPAW [10, 4],
a well-establish software package for electronic structure simulations, which is implemented in
Python and C and massively parallelized with MPI.

The remainder of the paper is structured as followed. In Section 2 we introduce related
research and distinguish our work. In Section 3 we highlight the concepts and implementa-
tion to record function entry/exit and communication events. In Section 4 we evaluate our
current implementation and show its capabilities for a performance analysis of parallel Python
applications. Finally, we conclude our work in Section 5.

2 Related Work

The most commonly used method to generate basic summarized information are the Python
modules profile and cProfile in combination with pstats [6]. Profile and cProfile provide statis-
tics for accumulated duration and number of invocations for various parts of the program. Both
export the same information and are mostly interchangeable; with the main difference being
that cProfile is a C extension with less overhead but also less compatibility. A function can
be profiled by calling cProfile.run(<function>) instead of <function> within any Python
script that imports the profiling module. CProfile can also be invoked as a script to profile
another script by adding -m cProfile to the Python command. The generated statistics can
be formatted into simple text reports via the pstats module. In a parallel execution, the output
is generated for each process and the output is intermingled, which requires some additional
post-processing to provide meaningful results.

2

Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

The TAU performance system allows to profile a parallel Python application and produces a
similar results to cProfile but with a GUI representation [11]. Additionally, the authors discuss
some further problems that arise for running and profiling parallel Python applications, e.g., the
fact that each module is imported redundantly for each process creating a remarkable overhead
in the start-up time. Unfortunately, the authors only mention the use of TAU without details
on how the performance information was collected.

Next to these, the commercial tools Allinea MAP [8] and Intel’s Vtune [13] support mixed
Python and C/Fortran applications. Allinea MAP provides basic system information over time,
e.g., CPU and memory utilization; which can be accessed without specific support for Python.
Intel VTune’s summarized information is based on periodic sampling for mixed Python and
C/Fortran applications but they mention some limitations in accuracy and the collection of
Python data. Nevertheless, we were unable to locate further details on the available Python
support for these tools at the moment of writing this work.

All the above mentioned tools have in common that they provide basic summarized profiling
information. In contrast, we present an event-based tracing approach that allows a detailed
and profound analysis, in particular, of the parallel behavior and inter-process dependencies.
In addition, we describe the methods to acquire the performance data, which is missing in
previous works. Furthermore, we evaluate and discuss the analysis capabilities for a well-known,
massively parallel application. To the best of our knowledge, this has not been previously done.

3 Implementation

In this section we discuss the extensions developed for the Extrae instrumentation package [2]
to support event-based tracing of function entry/exit and communication events for Python.
Extrae is an open-source tracing framework that provides instrumentation and sampling mech-
anisms to collect performance measurements from the most common parallel programming
models automatically (e.g. MPI, OpenMP, POSIX threads, etc.). The information captured by
Extrae typically includes the activity of the parallel runtime (e.g. message exchanges in MPI),
as well as performance counters and call-stack information to correlate the measurements with
the actual source code. Furthermore it is possible to manually or automatically instrument
source code functions. Likewise, the two main targets for event-based monitoring of Python
applications is, first, to capture the calls to the parallel runtime and, second, to provide the
according source code context.

3.1 Instrumentation of MPI

Event-based tracing for conventional (C or Fortran) MPI applications is a well-known technique
supported by most performance analysis tools. The most common approach relies on the MPI
standard profiling interface (PMPI) [12]. Each MPI function can be called with an MPI or
PMPI prefix, which allows the tools to intercept the program’s calls to MPI by rewriting the
functions with the MPI prefix. The new functions can capture performance data and then
perform the according message-passing operation by calling the associated PMPI function.

A convenient method for the function replacement is bundling all the new wrapper functions
together in a shared library to be loaded at runtime. This enables replacing the MPI calls from
a dynamically linked binary without having access to the source code nor having to relink.
This can be primarily effected by setting the LD PRELOAD environment variable to the path
of the shared object that redefines the MPI symbols. This library will be loaded before any
other library, replacing in turn the original implementation from the MPI runtime. Overriding

3

https://isiarticles.com/article/113061

