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a b s t r a c t 

In this paper, a novel adaptive filter algorithm, called boxed-constraint least mean square (BXCLMS) al- 

gorithm, is proposed for identifying the boxed-constrained system where the parameter to estimate is 

limited in a range from lower bound to upper bound. The proposed algorithm is derived by using the 

Karush-Kuhn-Tucker (KKT) conditions and fixed-point iteration algorithm. In addition, the stochastic be- 

havior analysis of proposed algorithm is performed in terms of mean and mean square performance. 

Finally, simulations are carried out to demonstrate the performance of BXCLMS algorithm and verify the 

correctness of the analytical results. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Online system identification is widely used in lots of the prac- 

tical applications over the past decades [1,2] . Its object is to seek 

a mapping between a dataset and its corresponding labels. As the 

most common used algorithms in online system identification, the 

recursive least square (RLS) and the least mean square (LMS) al- 

gorithms are derived by minimizing the online object cost func- 

tion which is collected from input or output measurement data [2] . 

In practical application, the parameters to be estimated are usu- 

ally forced some constraint due to the inherent physical feature or 

other reason [3] . As a popular constraint, the nonnegativity con- 

straint has been attracted much attention in refraining from physi- 

cally unreasonable solutions, such as chemometrician’s toolbox [4] , 

material fractions of abundance [5] and so on. To conserve intrin- 

sic feature of solutions corresponding to chemical concentrations, 

pixel intensities and other applications of science and engineering, 

respecting the nonnegativity is significative, because it can prevent 

absurd and unexpected consequents [6] . 

As one of the most frequently used constraint, the nonneg- 

ativity constraint has been studied in references [7–17] . Online 

system identification method, which is under nonnegativity con- 

straints, has been also applied to adaptively identify the system 

which is dynamic. Specifically, the nonnegative LMS (NNLMS) algo- 

rithm has been presented by Chen in [18] to solve the LMS optimal 
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issue which is subject to nonnegativity constraints. The NNLMS 

algorithm is obtained by using a gradient descent method and 

a fixed-point iteration algorithm. In addition, the Karush-Kuhn- 

Tucker (KKT) conditions [19] are also used to derive this algorithm. 

In [20–22] , the variants of NNLMS algorithm were proposed to en- 

hance the performance. 

Generally, the inequality constraint is also usually applied to the 

signal processing and communications [23–27] . For example, in the 

modern sampling theory, constrained reconstruction solves the fol- 

lowing optimal problem [27] 

x CLS = arg min 

x ∈G 
‖ 

Sx − c ‖ 

2 (1) 

where G = { x : ‖ Lx ‖ ≤ ρ, x ∈ W} . Particularly, the boxed constraint 

which means the parameters are subject to a certain boxed range 

is widely used in estimation problems of practical importance. In 

the real-time actuator optimization, the forces f should be lim- 

ited in the boxed constraint range [23] . In optimal power gener- 

ation and distribution, generator powers g i and line power flows 

p i should also be limited in the boxed constraint ranges [23] . 

In [28] , the authors studied overlapping community detection 

through bounded nonnegative matrix tri-factorization. Moreover, 

the boxed-constraint Kalman filtering have been proposed and 

used in real application [33] . Dual MIMU pedestrian navigation 

are proposed by using inequality constraint Kalman filtering [34] . 

In [36] , an improved extended Kalman filter with inequality con- 

straints for gas turbine engine health monitoring was proposed. In 

[31] , Li et al. proposed an auxiliary particle filtering algorithm with 

inequality constraints. Truncation nonlinear filters for state estima- 

tion with nonlinear inequality constraints were proposed by [32] . 
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Fig. 1. Diagram of system identification. 

In [35] , Yang et al. formulated the constrained H ∞ filtering prob- 

lem for the dynamical systems perturbed by bounded disturbances 

with interval state constraints. In adaptive filter theory, Nascimento 

proposed RLS adaptive filter with inequality constraint where the 

coefficients of adaptive are boxed constraint [30] . 

In this paper, motived by the RLS adaptive filter with boxed- 

constraint [30] , the boxed-constraint least mean square (BXCLMS) 

algorithm is derived to identify a particular system in which the 

parameters to be estimated are under boxed-constraints, which has 

lower computation complexity than RLS adaptive filter. The pro- 

posed algorithm is obtained by using the KKT conditions which are 

established for any convex cost function. In addition to the deriva- 

tion of the calculus, we give the performance analysis of the pro- 

posed algorithm including the mean performance analysis and the 

mean square performance analysis. Finally, extensive simulations 

are carried out to verify the analysis results presented. It is worth 

emphasizing that the proposed method of this paper can be easily 

extended to the other variants LMS algorithm, which is our future 

work. 

The paper is organized as follows. In Section 2 , the boxed- 

constraint least mean square algorithm is provided. In Section 3 , 

the perform analysis of proposed algorithm is conducted. Section 

4 conducts the simulations. Finally, the conclusion is drawn in 

Section 5 . 

2. Boxed-constraint least mean square algorithm 

Considering the estimation of a linear plant h = [ h 1 , h 2 , ..., h N ] 
T , 

as shown in Fig. 1 , the observed system output is given by 

d(n ) = h 

T u (n ) + z(n ) (2) 

where z ( n ) is the additive white Gaussian noise with power σ 2 
z , 

and u (n ) = [ u (n ) , u (n − 1) , ..., u (n − N + 1)] T represents a column 

vector with the zero mean Gaussian signal u ( n ). 

In parameter estimation of some system, such as power system 

and overlapping community detection, boxed-constraint is usually 

necessary. Consequently, this type optimum problem can be for- 

mulated as follows, 

h 

o = arg min 

h 

J(h ) 

subject to h i ≥ η
h i ≤ ξ , i = 1 , 2 , ..., N 

(3) 

where ξ is the upper bound of the estimate h of the system, η
is the lower bound of the estimate h of the system, η < ξ holds, 

h i is the i th entry of h , J ( h ) is convex cost function, and h 

o = 

[ h o 
1 
, h o 

2 
, ..., h o 

N 
] T is the optimal solution. 

To solve above optimum problem, the KKT condition is consid- 

ered as follows [19] , 

∇ h L ( h 

o , λo 
1 , λ

o 
2 ) = 0 (4) 

(
h 

o 
i − η

)[
λo 

1 

]
i 
= 0 , i = 1 , 2 , ..., N, (5) 

(ξ − h 

o 
i ) 

[
λo 

2 

]
i 
= 0 , i = 1 , 2 , ..., N, (6) 

where ∇ h denotes the gradient operator in regard to h , λo 
1 

and λo 
2 

are the vectors of optimum Lagrange multipliers, and 

L (h , λ1 , λ2 ) = J(h ) − λ1 h + λ2 h means the Lagrange function 

with the vectors of Lagrange multipliers λ1 and λ2 . Then, we can 

get the following formula 

∇ h L (h , λ1 , λ2 ) = ∇ h J(h ) − λ1 + λ2 . (7) 

Replacing h , λ1 , λ2 by h 

o , λo 
1 
, λo 

2 
, respectively, we have 

∇ h L ( h 

o , λo 
1 , λ

o 
2 ) = ∇ h J( h 

o ) − λo 
1 + λo 

2 = 0 . (8) 

Plugging back into Eq. (6) yields (
ξ − h 

o 
i 

)
[ ∇ h J( h 

o ) − λo 
1 ] i = 0 . (9) 

Arranging (9) leads to the following formula (
ξ − h 

o 
i 

)
[ ∇ h J( h 

o )] i − [ λo 
1 ] i ξ + [ λo 

1 ] i h 

o 
i = 0 . (10) 

Substituting (5) into (10) yields (
ξ − h 

o 
i 

)
[ ∇ h J( h 

o )] i = [ λo 
1 ] i ( ξ − η) . (11) 

Multiplying both sides of (11) by ( h o 
i 
− η) and using (5) , we 

have (
h 

o 
i − η

)(
ξ − h 

o 
i 

)
[ ∇ h J( h 

o )] i = 0 . (12) 

Using the fix-point iteration method to solve this optimum 

problem [18] , the component-wise gradient descent algorithm is 

expressed as 

h i (n + 1) = h i (n ) + μi f i (h (n )) ( h i (n ) − η) (ξ − h i (n )) 

[ −∇ h J(h (n ))] i , (13) 

where μi is the step size, f i ( h ( n )) is the positive function with re- 

spect to the h ( n ). 

Consider the cost function 

J(h ) = E 

[ ∣∣d(n ) − h 

T u (n ) 
∣∣2 

] 
(14) 

According to [2] , assuming that p represents the cross- 

correlation vector between the input vector u ( n ) and the desired 

response d (n) and R u denotes autocorrelation matrix of u ( n ), the 

gradient ∇ h J ( h ( n )) can be expressed as 

∇ h J(h ) = 2( R u h − p ) (15) 

Combining (13) and (15) , the iteration update of proposed algo- 

rithm is obtained as 

h i ( n + 1 ) = h i ( n ) + 2 μi f i ( h ( n ) ) ( h i ( n ) − η) ( ξ − h i ( n ) ) 

[ R u h − p ] i 
(16) 

Then, setting f i ( h ( n )) to 0.5 for all i and replacing the correlation 

matrix and the cross-correlation vector with their instantaneous 

values u ( n ) u 

T ( n ) and u ( n ) d ( n ), respectively, we obtain 

h (n + 1) = h (n ) + μe (n ) D u (n ) [ ξ1 − h (n ) ] ◦ [ h (n ) − η1 ] (17) 

where 1 represents the column vector whose entries are all one, 

D u ( n ) denotes a diagonal matrix whose entries are given by vec- 

tor u ( n ), ◦ means the Hadamard product operation and e ( n ) is the 

estimated error which is defined as 

e (n ) = d(n ) − h 

T (n ) u (n ) (18) 

Remark. Compared with the update equation of conventional LMS 

algorithm, the update Eq. (17) has the extra multiplying factor 

[ ξ1 − h (n ) ] ◦ [ h (n ) − η1 ] . Then, the update term of the i th entry 

of h ( n ) has the extra factor [ ξ − h i (n )] ◦ [ h i (n ) − η] compared to 
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