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A B S T R A C T

The data required to perform Human Reliability Analysis (HRA) for emergency conditions are not readily
available and are difficult to retrieve from accident investigations. In the absence of emergency conditions data,
the conventional approach of gathering data for HRA is using expert judgment. Expert judgment often suffers
from uncertainty, subjectivity, and incompleteness, which makes the reliability of this data collection technique
questionable. A more recent approach is to collect data by conducting experiment in virtual environments with
human subjects. Though virtual experimental technique addresses the issues of uncertainty, subjectivity, and
incompleteness, it still does not consider individual differences while assigning the influence of different factors
on human performance. This paper proposes to advance the virtual experimental technique by enabling the
consideration of individual differences. An experiment using virtual environment was done to observe perfor-
mances of 36 individuals during offshore emergency evacuation. By integrating the data collected from the
virtual environment into an HRA model, the reliability of each individual was assessed. Sensitivity analysis was
then performed to identify the most influential factors that contributed to failure in emergency conditions. This
analysis can help identify specific weaknesses that a participant might have. For example, if a participant is
found to be more sensitive to a particular factor, then training scenarios with different variations of the factor
can be provided to the participant until an accepted level of competency is reached. Identification of a weakness
can be combined with adaptive human factor training so that each individual can obtain competence more
quickly.

1. Introduction

Human reliability is defined as the probability that a person cor-
rectly performs system-required activities in a designated time period
(Swain and Guttmann, 1983). There are many human reliability
quantification techniques available today to assess how reliable humans
are in different contexts. Examples include: Success Likelihood Index
Methodology (SLIM), Technique for Human Error Rate Prediction
(THERP), and A Technique for Human Error Analysis (ATHENA)
(Kirwan, 1994; Cooper et al., 1996). The Bayesian network (BN) ap-
proach has also been applied to human reliability analysis (HRA)
(Baraldi et al., 2009). Most of the human reliability quantification
techniques involve the calculation of human error probability (HEP),
which is the probability that a person will fail to carry out a task as
required (Kirwan, 1994). Performance shaping factors (PSFs) are often
used to calculate HEP (Blackman et al., 2008). Human performance,
and hence error, is influenced by PSFs, and therefore the relationship

between PSFs and human errors must be defined to calculate HEP. Due
to lack of real or ecologically-valid data, the majority of the human
error prediction techniques (i.e. SLIM, THERP, BN) often use expert
judgment to define this relationship. Though expert judgement is a
valuable technique, it can suffer from uncertainty, subjectivity, and
incompleteness. Significant conflict among judgements may also arise
when collected from multiple experts. Recent works (Musharraf et al.,
2014) have proposed the use of virtual experimental technique as an
alternative to expert judgement. This technique collects empirical evi-
dences required to perform a human reliablity assessment by con-
ducting experiments in virtual environments with human subjects.
However, this work does not account for individual differences when it
comes to the influence or importance of PSFs on human errors. Humans
are inherently different and therefore the role that different PSFs play
on performance may vary from individual to individual. For example,
consider a case where complexity and visibility are two different PSFs
that can influence one's performance during an evacuation. While
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complexity can play a more important role than visibility for one in-
dividual, it can be the other way around for another individual. This
paper proposes an expansion of the virtual experimental technique to
account for individual differences during the HRA process. In this
paper, the term individual difference refers to the difference between
the sensitivity of two individuals to external PSFs. It does not cover the
more general aspects that might differ between individuals such as
gender, education, and physical characteristics.

The HRA technique used in this paper is the BN approach. BNs have
proven to be a powerful tool for HRA for the following reasons: (1) this
approach can consider the dependencies among PSFs and the associated
actions, (2) it can incorporate new evidence and update the HEP, and
(3) it can support the root-cause analysis of human error (Podofillini
and Dang, 2013; Sundaramurthi and Smidts, 2013). BNs have been
widely used to model the impact of different PSFs on human perfor-
mance or human error (Baraldi et al., 2009; Dang and Stempfel, 2012).
Kim and Seong (2006), Cai et al. (2013) and Martins and Maturana
(2013) show examples of using the evidential reasoning aspect of BN to
find the underlying causes of human error. Also, the BN model allows
the incorporation of multiple sources of data into a single predictive
HRA model (Groth and Mosleh, 2012b). A more comprehensive list of
the demonstrated benefits of BN for HRA in different domains can be
found in Groth and Swiler (2013) and Mkrtchyan et al. (2015).

In this paper, a BN model is developed to observe the impact of two
PSFs (complexity and visibility) on human error during an offshore
emergency evacuation. In this model, PSFs and errors are all random
variables, and the probability of an error occurring is conditionally
dependent on the PSFs. To define conditional dependencies in the BN,
necessary data were collected from a study conducted in a virtual en-
vironment with 36 participants. At the beginning of the study each
participant was assigned to one of two training groups: (1) G1: high
level training and (2) G2: low level training. The training level assigned
to each participant remained unchanged for the rest of the experiment.
Virtual emergency scenarios were created with different levels of visi-
bility (clearly visible vs. blackout conditions) and complexity (low
complexity, such as a muster drill vs. high complexity, such as a dy-
namic emergency situation). Participants’ performance in the series of
virtual emergency scenarios were observed. By integrating the perfor-
mance data into the BN, the reliability of each subject was assessed.
Next, sensitivity analysis was performed to find the relative contribu-
tion of the PSFs to failure.

Section 2 gives an overview of the BN approach to HRA and the
virtual environment used in the experiment. Section 3 describes the
methodology, data collection and integration using a case study of
offshore emergency evacuation. Section 4 presents and explains the
results. The limitation of the study and future works are discussed in
Section 5. Section 6 summarizes and concludes the paper.

2. Background

2.1. Bayesian network (BN) approach to HRA

A BN approach was used to calculate the HEP. According to Pearl
(1988), BNs are acyclic directed graphical models that represent con-
ditional dependencies among a set of random variables. While per-
forming a task or exercise, errors can occur at different steps of the
process. Each error is regarded as the outcome of the joint influence of
different PSFs (as depicted in Fig. 1). In the BN approach to HRA, error
is the critical node which depends on several PSFs that can influence
the occurrence of the error. For example, in an offshore emergency
evacuation situation, interacting with hazards (e.g. smoke or fire) is an
error that may occur because the visibility is compromised (PSF1), or
the operator is not familiar with the complexity of the situation (PSF2),
or both. Fig. 1 shows the relationship between human error and PSFs.
This paper investigates the impact of only two PSFs (visibility and
complexity) on human error. A comprehensive list of PSFs can be found

in Groth and Mosleh (2012a) and Mearns et al. (2001).
To define the relationship between a human error and PSFs, two

parameters are needed: (1) the prior belief (in terms of probabilities) of
the PSFs and (2) the conditional belief (in terms of probability dis-
tribution) of the human error. In this case, prior probabilities of all
possible states of a PSF are assumed equal (50% if the PSF is binary).
The difficult part is to define the conditional probabilities, which re-
present the conditional dependency of human error on PSFs. This paper
uses data collected in a virtual environment to define these conditional
dependencies. Conditional dependencies are defined separately for each
individual to reflect the fact that influence of PSFs on error may vary
from individual to individual. Section 3 illustrates the approach in
detail.

Once the probabilities of different errors during a task are calcu-
lated, they can be combined using the definitional/synthesis idiom,
rather than a causal relationship, to achieve an overall failure prob-
ability for the task (Fenton and Neil, 2012). For example, in an offshore
emergency evacuation situation, if an operator is interacting with a
smoke hazard (Error1) while keeping all fire doors open throughout the
evacuation process (Error2), then these errors can be combined to get an
overall failure probability of the operator for the task evacuation. To
reduce the computational complexity, errors (Error1−n) are first clas-
sified into categories (CT1−n) and then combined to get an overall
failure (F) probability. The different categories of error considered in
this paper are as follows: perception error, recognition error, procedural
error, and lack of situational awareness. Each error can be classified
into one or more categories. For example, interaction with a hazard can
be categorized as a failure to perceive the severity of the hazard (per-
ception error) and keeping fire doors open can be categorized as a
procedural error. Fig. 2 shows how error probabilities in different ca-
tegories can be combined to quantify the overall failure probability.

As shown in Fig. 2, there are two relationships that need to be de-
fined: (1) the relationship between the errors (Error1−n) and different
categories (CT1−n) and (2) the relationship between different categories
(CT1−n) and overall failure (F). Two parameters are needed to define
these relationships: (1) the conditional belief (in terms of probability
distribution) of the categories (CT), and (2) the conditional belief (in
terms of probability distribution) of the overall failure (F).

To demonstrate how conditional probability distribution of CTs can
be defined, a simple case is considered where the category variable CT1
is binary and can have two possible states: acceptable and not acceptable.
CT1 is assumed to be dependent on Error1 and Error2. Table 1 shows the
conditional probability table for CT1. As shown in the table, P(C-
T1 = Acceptable) becomes zero if either Error1 or Error2 occurs. The only
case when P(CT1 = Acceptable) becomes one is when none of the errors
have occurred.

The conditional probability table for the failure node F can be

Fig. 1. Relationship between PSFs and human error. Error is the outcome of joint influ-
ence of PSF1 to PSFn.
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