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A B S T R A C T

In this work, a new explicit time marching technique is considered to analyse 2D electromagnetic wave propa-
gation problems. The technique considers adaptive time integrators, which are spatially and temporally locally
computed, providing a connection between the adopted spatial and temporal discretizations. This approach al-
lows the errors produced by both discretization procedures to be counterbalanced, enabling more accurate an-
alyses. A multi time-steps methodology is also considered here, associated to subcycling techniques, enhancing
the efficiency and the adaptive features of the method. As it is described along the paper, the new technique is
very effective, robust and simple to implement, providing a very suitable numerical approach to analyse complex
wave propagation models.

1. Introduction

Electromagnetic wave propagation phenomena have numerous ap-
plications in various branches of science and in practical engineering
design. Since it is usually very difficult to obtain analytical transient re-
sponses for these models, numerical techniques must be applied to find
approximate solutions, and step-by-step time integration algorithms are
routinely employed when a detailed description of the wave propagation
evolution is required.

The literature reports many classical explicit [1–5] and implicit
[6–10] algorithms for time-marching analysis (for a comprehensive re-
view, see Ref. [11]). Explicit procedures are usually preferable because of
their lower computational effort; however, there are restrictions in their
use due to stability conditions. Implicit approaches, on the other hand,
are generally unconditionally stable; however, they are usually charac-
terized by higher computational costs. Many procedures can be
employed to improve the stability and accuracy of time integration al-
gorithms, such as subcycling techniques [12–14], high-order accurate
schemes [15–20], automatic time step control [21–25], etc. As a matter
of fact, a lot of research is continuously realized on this field and several
time marching techniques are available nowadays for wave propagation
analysis [26–39].

Numerous efforts during the past several decades have focused on
developing time integration algorithms that include controllable nu-
merical dissipation in the high-frequency response domain. The purpose

of this numerical dissipation is to reduce the spurious, non-physical os-
cillations that sometimes occur due to the excitation of spatially unre-
solved modes. One basic difficulty in designing such algorithms is to add
high-frequency dissipation without introducing excessive algorithmic
damping in the important low-frequency modes. Considering time
marching techniques, numerical dissipation can be measured by the
spectral radius of the method, which is defined as the largest magnitude
of the eigenvalues of the numerical amplification matrix. In a stable
analysis, the spectral radius varies between zero and one, and when the
spectral radius is unitary, the technique is non-dissipative. Numerical
damping is introduced when the spectral radius becomes lower than one.
In the extreme case, the spectral radius can be reduced to zero (or close to
zero), providing maximal dissipation and allowing specific frequency
responses to be very quickly eliminated. Several implicit time-marching
techniques with dissipative properties are available nowadays for hy-
perbolic models [6–10,29–35]; however, as described by Hulbert and
Chung [1], numerical dissipation is also important (and perhaps more
important) when solving wave propagation problems using explicit
methods, and few works focus on this topic [40–43]. The principal use of
explicit time integration methods is for problems in which the time step
size needed for accuracy is of the same order as the step size limit dictated
by the stability limit of an explicit method (e.g., wave propagation and
impact problems). The response of these problems is usually character-
ized by large gradients and/or discontinuities in the solution due to
propagating wave fronts. Among explicit time integration methods, the

* Corresponding author.
E-mail address: delfim.soares@ufjf.edu.br (D. Soares).

Contents lists available at ScienceDirect

Finite Elements in Analysis and Design

journal homepage: www.elsevier .com/locate/finel

https://doi.org/10.1016/j.finel.2017.11.002
Received 2 June 2017; Received in revised form 13 November 2017; Accepted 13 November 2017

0168-874X/© 2017 Elsevier B.V. All rights reserved.

Finite Elements in Analysis and Design 141 (2018) 1–16

mailto:delfim.soares@ufjf.edu.br
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2017.11.002&domain=pdf
www.sciencedirect.com/science/journal/0168874X
www.elsevier.com/locate/finel
https://doi.org/10.1016/j.finel.2017.11.002
https://doi.org/10.1016/j.finel.2017.11.002
https://doi.org/10.1016/j.finel.2017.11.002


nearly universal choice is the Central Difference Method (CDM), which
possesses no numerical dissipation. Thus, spurious oscillations may occur
in the solutions computed using the CDM.

In this work, a new explicit time marching procedure is proposed to
analyse electromagnetic wave propagation models, in which enhanced
dissipation control is enabled. Here, the spatial discretization of the
model is carried out by employing the Finite Element Method (FEM)
[44–46] and an adaptive time marching technique is implemented,
which considers a connection between the adopted temporal and spatial
discretizations. Thus, in this methodology, an adaptive time integrator is
considered, which assumes different values for each finite element and
for each time step, and these values are computed taking into account the
physical/geometrical properties of the elements of the spatial dis-
cretization, the adopted time-step, and local previous time step results.
The evaluation of this parameter focuses on enabling an effective nu-
merical dissipative algorithm, aiming to eliminate the influence of
spurious modes and to reduce amplitude decay errors. It defines the so-
called dissipative and non-dissipative elements of the model, which are
relabeled at each time step of the analysis. The proposed adaptive
strategy is non-iterative and only based on single-step relations involving
two variables: the unknown field itself and its first time derivative. Thus,
just a trivial single set of equations has to be dealt with within a time-step
(explicit analysis), and the resulting method stands as truly self-starting,
eliminating any kind of cumbersome initial procedure, such as the
computation of initial second time derivative values and/or the compu-
tation of multistep initial values.

The basic framework of the recursive time-marching relations dis-
cussed here was presented by Soares [39], taking into account
non-adaptive procedures. Later on, this initial work was extended for
implicit formulations, considering adaptive approaches [35]. Explicit
algorithms were also developed, considering non-transient adaptive
procedures [42]; in this case, the time integration parameters were just

adapted once, according to the features of the FEMmatrices. Here, a fully
explicit adaptive formulation is presented, in which the time integration
parameter not only adapts itself according to the properties of the model
and the adopted discretizations, but also as the solution evolves. In
addition, the time discretization itself is also locally adapted, according
to the adopted spatial discretization (subcycling).

The manuscript is organized as follows: first (section 2), the govern-
ing equations of the model are briefly presented and, in the sequence, the
adopted spatial and temporal numerical discretizations are discussed
(section 3), describing the proposed adaptive technique. In section 4,
numerical results are considered, illustrating the accuracy and effec-
tiveness of the methodology. Further details on the mathematical
formulation of the new approach are provided in the appendix, where the
stability and dissipative features of the technique are more
deeply discussed.

2. Governing equations

Maxwell's equations in differential form can be written as follows:

eijkEk;j ¼ � _Bi (1a)

eijkHk;j ¼ _Di þ Ji (1b)

Di;i ¼ ρ (1c)

Bi;i ¼ 0 (1d)

where indicial notation for Cartesian axes is considered and eijk stands for
the permutation symbol (also known as alternator tensor). Subscript
commas and overdots indicate partial space and time derivatives,
respectively (i.e., Vi;j ¼ ∂Vi=∂xj and _Vi ¼ ∂Vi=∂t, where ViðX; tÞ stands for
a generic vector field representation and X and t denote its spatial and
temporal arguments, respectively).

In equation (1), Ei and Hi are the electric and magnetic field intensity
components, respectively; Di and Bi represent the electric and magnetic
flux density, respectively; and Ji and ρ stand for the electric current and
electric charge density, respectively. The constitutive relations between
the field quantities are specified as follows:

Di ¼ ε Ei (2a)

Bi ¼ μ Hi (2b)

Ji ¼ σ Ei (2c)

where the parameters ε, μ and σ denote, respectively, the permittivity,

Fig. 1. Sketch of the first model: regions of electric currents (parallel lines) and dis-
cretized domain.

Fig. 2. Adopted discretizations for the first model: (a) 1008 elements and Δt0 ¼ 2:1965⋅10�11s; (b) 3458 elements and Δt0 ¼ 1:1728⋅10�11s; (c) 13906 elements and Δt0 ¼ 5:7305⋅10�12s;
and (d) 33472 elements and Δt0 ¼ 3:1282⋅10�12s.
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