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a b s t r a c t 

In this paper, the compressive sensing (CS) is introduced to the electromagnetic multi-static scattering 

problems for the purpose of reducing computation runtimes. During the simulations, the CS paradigm 

is worked as an incident angle reduction tool. The scattered fields generated by all excitations in one 

scattering angle are treated as the signal of interest, which is under sampled directly based on the CS 

theory. And then the measurement of the scattered fields is converted to the measurement of the induced 

currents and the excitations by the Huygens principle and the relationships between the induced currents 

and the excitations. By solving the measured matrix equation with the fast multipole method (FMM), 

one can get the measurement of the scattered fields. Finally, the orthogonal matching pursuit (OMP) is 

utilized to reconstruct the original scattered fields by solving an optimal � 1 norm equation. Numerical 

simulations demonstrate that, if the interpolation is not taken into account, the introduction of CS can 

save significantly while maintaining sufficient accuracy. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

To sample a signal in traditional data acquisition system, the 

Shannon–Nyquist sampling theorem must be followed. In another 

word, to avoid losing information when capturing a signal, the 

sampling rate must be at least twice the maximum frequency in 

the signal. With the increasing demand for information, the band- 

width of the signal is wider and wider. Thus, the sampling rate is 

becoming faster and faster. But in some applications, increasing the 

sampling rate is very expensive. Also the ever increasing amounts 

of data make it very difficult to transmission and storage. Therefore 

it comes so naturally that the sampled data must firstly be com- 

pressed to reduce transmission and storage costs. Consequently, 

the sample—then—compress framework causes a great waste of re- 

sources. 

Compressive sensing (CS) is a new sampling paradigm that goes 

against the traditional sample-then-compress framework. CS was 

first proposed by Donoho, Candès and Tao in 2006 [1–4] . One of 

the most attractive properties of the CS theory is that: CS promises 

to overcome the sampling rate limitation enforced by Shannon–

Nyquist sampling theorem and reconstruct signals from much 

fewer measurements than the nominal number of data points. As 
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a consequence, CS has emerged as one of the most active areas in 

imaging [5,6] , photography [7] , audio/video capture [8] , etc. Also, 

several electromagnetic problems are found to be suitably recast 

for an effective solution within the CS framework. For example, 

antenna arrays analysis and synthesis [9] , inverse scattering [10] , 

ground penetrating radar [11] , etc. A broad review of CS in electro- 

magnetics has been put forward by Massa et al. in [12,13] . 

In this paper, the electromagnetic multi-static scattering prob- 

lem is interested, which is an important branch of electromag- 

netics. Generally, to perform such a multi-static scattering prob- 

lem with the fast multipole method (FMM) when plane wave ex- 

citation is considered, one typically needs to firstly constitute and 

solve a matrix equation to derive the associated unknown induced 

currents for each incident angle. The computed induced currents 

are then being employed to compute the scattered fields at all 

scattering angles. As a result, the amount of computations is di- 

rectly related to the number of incident angles. And unfortunately, 

the number of incident angles that must be considered in solving 

multi-static scattering problems is typically very large. This makes 

the solving of multi-static scattering problems a computationally 

challenging task. Therefore, how to reduce the incident angle sam- 

pling rate while maintaining sufficient accuracy is becoming more 

and more important. And this motivated the introduction of CS 

theory to scattering problems. 

http://dx.doi.org/10.1016/j.jqsrt.2017.07.032 

0022-4073/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.jqsrt.2017.07.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2017.07.032&domain=pdf
mailto:srchai1989@gmail.com
http://dx.doi.org/10.1016/j.jqsrt.2017.07.032


S.-R. Chai et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 202 (2017) 136–146 137 

There also exist several studies in the literature that utilizing 

the CS theory to reduce the number of computations required for 

solving scattering problems. For example, in [14–17] the CS the- 

ory is applied to speed up the matrix solving procedure of method 

of moments (MoM) in solving bistatic scattering problems. Unfor- 

tunately, the proceeded problems in the aforementioned studies 

have only one incident angle, which not belong to the scope of 

the wide angle scattering problems. In [18] , Wu and his team pro- 

posed a CS-MoM method, which introduces the ideas from CS to 

the MoM, to efficiently solve two dimensional monostatic scatter- 

ing problems. Based on Wu’s work, Chai et al. [19,20] introduced 

the nonuniform rational B-spline (NURBS) surfaces and the Rao–

Wilton–Glisson (RWG) basis functions into the CS-MoM to solve 

the three dimensional monostatic scattering problems. In [21] , a 

CS based multilevel fast multipole algorithm (MLFMA) method is 

proposed, which introduces a new type of excitations, to further 

reduce the amount of data need for monostatic scattering. In [22] , 

Cao attempts to use the excitation matrix as the sparse trans- 

form matrix in the CS-based MoM method. Chen proposed a CS- 

CBFM method in [23] . In CS-CBFM, the characteristic basis function 

method (CBFM) is utilized to reduce the matrix size and make the 

matrix equation easier to solve, while the CS is introduced to de- 

crease the number of matrix equations that need to be solved for 

in performing a monostatic scattering analyzing. The application 

of CS to the iterative physical optics (IPO) is also demonstrated in 

[24] for the purpose of reducing simulating runtimes. In [25] , the 

hybrid method that conjugating CS technique, MoM and the adap- 

tive cross approximation (ACA) for efficiently target characteriza- 

tion is proposed and validated. All of the aforementioned methods 

are proposed for monostatic scattering problems. Although these 

methods can be expanded to multi-static scattering problems with 

minor modifications, they have a common disadvantage. That is 

the induced currents on one patch over all incident angles are set 

as the proceeded signal. Therefore the number of signals is equal 

to the number of unknowns in the methods mentioned above. 

And the number of unknowns is typically very large in scatter- 

ing problems. Thus the above mentioned methods are all ineffi- 

cient in analyzing multi-static scattering problems. In this paper, a 

new method named CS-FMM is proposed to improve the computa- 

tional efficiency in solving the multi-static scattering problems. In 

CS-FMM, the FMM and the CS are utilized as the computing kernel 

and the incident angle reduction tool, respectively. It should also 

be pointed out that, the scattered far fields over all incident angles 

at a fixed scattering angle are treated as the proceeded signal in 

CS-FMM, and the number of the signals is equal to the number of 

scattering angles. It easy to be found that, the signal-form and the 

signal-number of the CS-FMM are both different with those of the 

aforementioned methods. 

Carin et al. [26] have exploited an in situ CS algorithm, which 

conjugate the CS theory with the MLFMA, for fast computation 

of multi-static scattering problems. But the CS-FMM method pro- 

posed in this paper has its own advantages. First, the scattered far 

fields over all incident angles at a fix scattering angle are treated 

as the proceeded signal in CS-FMM. While the signal represents 

the Fourier transform of the induced currents in Carin’s work. Sec- 

ond, a complex propagation medium and a window function need 

to be introduced to exploit the multipath of the medium and sim- 

plify the introduction of CS theory in [26] . But all these are not 

needed in our method. Hence, the CS-FMM proposed in this paper 

is much easier to understand and use. Third, the scattered fields 

derived by Carin’s method include the effects of the induced cur- 

rents introduced by interaction with the heterogeneous medium. 

But in CS-FMM, there is no such part of influence. Fourth, both the 

incident angles and the scattering angles are sparsely measured in 

Carin’s method. While CS-FMM proposed in this paper only need 

to sparsely sample the incident angles. Fifth, discrete cosine trans- 

form (DCT) is chosen as the sparse basis function in [26] . But the 

fast Fourier transformation (FFT) is used in CS-FMM. 

Another way to accelerate the existing algorithms is reducing 

the number of iterations in solving each matrix equations. For ex- 

ample, Okada et al. proposed an accelerating method of discrete 

dipole approximation (DDA) to solve matrix equations efficiently 

in [27] . In which the interpolation of the surrounding incident an- 

gle results is utilized as the initial guess of this incident angle. It 

is worth noting that the total number of incident angles (or matrix 

equations) is not changed in Okada’s method. While CS-FMM con- 

centrates on reducing of the number of incident angles (the num- 

ber of matrix equations to be solved for). The number of iterations 

in CS-FMM is the same with that in FMM. 

T-matrix [28,29] is another class of methods that solving scat- 

tering problems. There exist two differences between CS-FMM and 

T-matrix. First, T-matrix is based on spherical harmonics, while the 

sparse basis in CS-FMM can be set freely as DCT, FFT, DWT, etc. 

Second, the incident and scattered fields are both expanded into 

spherical vector wave functions in T-matrix. But the CS-FMM only 

needs to expand the scattered fields. 

The remainder of this paper is organized as follows. In 

Section 2 , a brief introduction of CS and FMM is provided first. 

Then a detailed procedure of how CS-FMM method worked is 

demonstrated. A comparison of the computational complexity of 

traditional FMM and the CS-FMM is also presented in this section. 

In Section 3 , the CS-FMM is utilized to calculate the far zone scat- 

tered fields from several conducting bodies (cylinder, sphere, plate 

and ship). The computational results and the runtimes of the CS- 

FMM are compared with those of the traditional FMM to illustrate 

the validity and efficiency of the new method. Finally, concluding 

remarks are addressed in Section 4 . 

2. Theoretical model 

2.1. Compressive sensing theory 

Compressive sensing [1–3] attempts to sample a compressible 

signal at a rate significantly below the Shannon–Nyquist rate and 

reconstruct the signal without too much perceptual loss. Thus one 

of the fundamental of CS theory is that the signal to be dealt with 

is compressible or sparse. Assume that the processed signal is a 

one dimensional complex signal with length N . Rewrite the signal 

in column vector form as x ∈ C 

n ×1 . By introducing a proper sparse 

transform basis �N × N , x can be expressed as 

x N×1 = 

N ∑ 

i =1 

�i ̃  y i = �N×N ̃  y N×1 (1) 

in which y represents the weighting coefficients. By k sparse, we 

mean that y has a concise representation and has only k nonzero 

elements. 

In this paper, the FFT matrix is selected to be the sparse trans- 

form basis, which has the following forms 

�N×N = 

1 √ 

N 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 · · · 1 

1 w w 

2 · · · w 

N−1 

1 w 

2 w 

4 · · · w 

2(N−1) 

. . . 
. . . 

. . . 
. . . 

. . . 

1 w 

N−1 w 

2(N−1) · · · w 

(N−1)(N−1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

N×N 

(2) 

where w = exp ( − 2 π i / N ). 

The second precondition that makes CS sampling and recover- 

ing possible is incoherent [30] , which means that the measurement 

matrix �m × N is incoherent with the sparse transform basis �N × N . 

Where m is the number of measurements. In another word, the 

rows of � cannot be sparsely represented by the columns of � . 
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