Accepted Manuscript

A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior

Maria L. Amundadottir, Siobhan Rockcastle, Mandana Sarey Khanie, Marilyne Andersen

PII: S0360-1323(16)30386-9

DOI: 10.1016/j.buildenv.2016.09.033

Reference: BAE 4655

To appear in: Building and Environment

Received Date: 20 June 2016

Revised Date: 24 September 2016 Accepted Date: 30 September 2016

Please cite this article as: Amundadottir ML, Rockcastle S, Khanie MS, Andersen M, A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior, *Building and Environment* (2016), doi: 10.1016/j.buildenv.2016.09.033.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior

Maria L Amundadottir¹, Siobhan Rockcastle¹, Mandana Sarey Khanie¹ and Marilyne Andersen¹ Interdisciplinary Laboratory of Performance-Integrated Design (LIPID), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Corresponding author: Marilyne Andersen, E-mail: marilyne.andersen@epfl.ch

Highlights:

- This paper introduces a novel approach to daylight assessment based on predictive models
 concerning non-visual health potential, visual interest, and gaze behavior within a visually
 immersive scene.
- Three predictive models are applied from 18 initial view directions over a 360° span for different time instances to provide a temporal and spatial analysis of an architectural case study from a central view position.
- These models were developed to quantify daylight performance based on physiological,
 perceptual, and behavioral human data brought together for the first time to illustrate the need
 for multi-criteria analysis and human-centric performance assessment of daylight.
- Daylight performance from a human-centric perspective can provide designers with more
 information on an occupant's health, interest, and comfort, to move beyond analyses reliant on
 task-oriented illumination to address specific human needs of ocular light exposure.

Abstract

This paper introduces a novel approach for the assessment of daylight performance in buildings, venturing beyond existing methods that evaluate 2-dimensional illumination and comfort within a fixed field-of-view in order to predict human responses to light concerning non-visual health potential, visual interest, and gaze behavior in a visually immersive scene. Using a 3D rendered indoor environment to exemplify this coordinated approach, the authors assess an architectural space across a

دريافت فورى ب متن كامل مقاله

ISIArticles مرجع مقالات تخصصی ایران

- ✔ امكان دانلود نسخه تمام متن مقالات انگليسي
 - ✓ امكان دانلود نسخه ترجمه شده مقالات
 - ✓ پذیرش سفارش ترجمه تخصصی
- ✓ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 - ✓ امكان دانلود رايگان ۲ صفحه اول هر مقاله
 - ✔ امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 - ✓ دانلود فوری مقاله پس از پرداخت آنلاین
- ✓ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات