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a b s t r a c t 

In this paper, the global asymptotic stability of two-time-scale competitive neural networks(CNNs) with 

multiple time-varying delays is investigated. By constructing a new ε-dependent Lyapunov functional, 

sufficient conditions for the global asymptotic stability of the concerned systems are established, and an 

optimization problem is formulated to get the best estimate of the ε-bound. Compared with the existing 

results, the proposed results are more general and less conservative in the sense of determining an upper 

bound for the time-scale parameter ε. Finally, three examples are given to illustrate the advantages of the 

obtained results. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Competitive neural networks constitute an important class of 

neural networks and model the dynamics of cortical cognitive 

maps with a combined neural activity and weight dynamics 

[1] . Grossberg’s shunting network proposed in [2] and Amari’s 

model for primitive neuronal competition proposed in [3] are 

early competitive neural networks, where synaptic connections 

are considered to be fixed. In 1996, Meyer-Baese extended the 

earlier models to a special one whose synapses can be modified by 

external stimuli [1] . The model is represented by two differential 

equations and has two types of state variables with different time 

scales. One is the short-term memory(STM) describing the fast 

neural activity, and the other one is the long-term memory(LTM) 

describing the slow modifications of the synapses caused by exter- 

nal stimuli. The general equations describing the states for the i th 

neuron of an n -neuron CNNs with two time scales are as follows: 

ST M : ε ˙ u i (t) = −a i u i (t) + 

n ∑ 

j=1 

ω i j g j (u j (t)) + b i 

n p ∑ 

k =1 

m ik (t) y k , (1) 

LT M : ˙ m ik (t) = −m ik (t) + y k g i (u i (t)) , (2) 

where u i ( t ) > 0 represents the neuron current activity level, m ik ( t ) 

represents the synaptic efficiency, g j ( u j ( t )) is the output of neuron 
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u j ( t ), a i > 0 is the time constant of the neuron, ω ij represents the 

connection weight between the i -th neuron and the j -th neuron, y k 
is the constant external stimulus, b i is the strength of the external 

stimulus and ε > 0 represents the fast time-scale associated with 

the STM state, i, j = 1 , . . . , n, k = 1 , . . . , n p . 

Neural networks model the dynamics of cortical cognitive maps 

accurately, and they can be widely applied to image processing, 

signal processing, optimization, pattern recognition and control 

theory, etc. [4] . Therefore, there have been a lot of research about 

the two-time-scale CNNs in the past years ranging from stability, 

synchronization and adaptive nonlinear systems identification, etc. 

(see [1,5,6] and the references therein). 

Stability plays a key role in the design and application of 

neural networks [4] . And stability analysis of two-time-scale CNNs 

is essential and has been extensively studied [1,7–13] . Two-time- 

scale CNNs were first interpreted as nonlinear singular perturbed 

systems(SPSs) in [1] and a global stability analysis method was 

proposed by constructing a suitable quadratic-type Lyapunov 

function. Flow invariance theory was applied to study exponential 

stability of two-time-scale CNNs in [8] . Theoretical conditions en- 

suring global exponential stability of the network was established 

based on the nonsmooth analysis techniques in [9] . Lately, singular 

perturbation theory and vector Lyapunov function were employed 

to study the input-to-state stability(ISS) of two-time-scale CNNs in 

[10] , and a method of estimating an upper bound for the singular 

perturbation parameter ε was proposed. However, since biological 

networks pose a certain degree of uncertainty or undergo many 

parametric perturbations, there arise some studies about the 
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dynamical behaviors of the two-time-scale CNNs with fluctuating 

activation functions and synaptic weights [11,12] In [11] , robust 

stability was studied and conditions were established based on the 

singular perturbation theory. A maximal upper bound for the fast 

time-scale associated with the neural activity state was derived. 

Stability conditions were given in [12] based on Gershgorin’s 

Theory and a more realistic upper bound for ε is obtained. These 

existing models [1,7–12] were extended to deal with stochastic 

disturbance in [13] , where the conditions ensuring the existence of 

the exponentially mean-square stability equilibria was established 

based on the theory of singularly perturbed stochastic systems. 

In practice, time delays in artificial neural networks are very 

common due to the signal transmission lag and the finite switch 

speed of amplifiers in the circuit implementations, which may 

lead to oscillation, divergence, chaos, instability or other poor per- 

formance [14,15] . Thus, the dynamical behaviors analysis of two- 

time-scale CNNs with time delays has attracted a lot of attention 

in recent years [4,16–25] Single constant delay was first introduced 

into the two-time-scale CNNs in [16] , and the global exponential 

stability was analyzed based on the nonsmooth technology in [17] . 

Time-varying delays was first introduced into the two-time-scale 

CNNs in [18] , and the results were improved in [19] based on 

the LMI techniques. Some criteria for the CNNs with continuously 

distributed delays were presented by using theory of the topolog- 

ical degree and strict Lyapunov functional methods in [20] . Mixed 

delays containing time-varying delays and distributed delays was 

first introduced into the two-time-scale CNNs in [4] , and the 

multi-stability in [4] and global exponential stability in [21] were 

investigated, respectively. In recent years, some researchers con- 

sidered networks with time-varying delays and discontinuous 

activation functions [22–24] . The global stability was discussed 

by using the Leray–Schauder alternative theorem, LMI techniques 

and generalized Lyapunov function methods [22,23] . Global expo- 

nential stability of almost periodic solutions was studied based on 

nonsmooth analysis by constructing suitable Lyapunov functionals 

in [24] . These results were extended in [25] where mixed time- 

varying delays and discontinuous activation functions were con- 

sidered at the same time. In addition, two-time-scale CNNs with 

multi-proportional delays were discussed and conditions for the 

exponential stability was obtained based on fixed point theorem in 

[26] . 

Two-time-scale CNNs were interpreted as SPSs and were 

decomposed as a lower-ordered reduced system and a boundary- 

layer system in [1] . A quadratic-type Lyapunov function was 

established as a weighted sum of individual Lyapunov functions 

for both subsystems, then an upper bound ε0 was obtained. The 

ε-bound characterizes the robustness of system performance, and 

a larger ε-bound means better robustness [27] . Therefore, it is sig- 

nificant to consider and determine ε-bound. And many researchers 

concentrate on determining an upper bound ε0 such that the 

concerned system is asymptotically stable for any ε less than or 

equal to the ε-bound [27–29] . However, among the existing liter- 

ature about two-time-scale CNNs mentioned above, most of them 

do not emphasize the significance of ε-bound and ε is set as a 

constant (usually 1) for convenience, so that the obtained stability 

criteria hold only when ε is equal to the specific constant [4,9,22] . 

And the rest of them determine an upper bound for the time-scale 

parameter, so that the network is stable for any allowable value 

of ε [1,10,22] but time delays are not taken into consideration 

therein. The input-to-state stability of two-time-scale CNNs was 

studied by employing vector Lyapunov function in [10] . However, 

if considering time-varying delays, the analysis process would be 

very complicated. In [12] , robust stability results were obtained 

assuming that the resulting parameter perturbations were only 

limited by their bounds. Therefore, to the best of our knowledge, 

there is no relative research considering ε-bound and multiple 

time-varying delays of the two-time-scale CNNs at the same time 

yet, which motivate this work. 

In this paper, we will preserve the time-scale parameter ε in 

(1) –(2) and investigate the global stability of two-time-scale CNNs 

with multiple time-varying delays by considering the ε-bound. 

The main objective of this paper is to obtain an upper bound 

ε0 , such that the concerned network is globally asymptotically 

stable for any ε less than or equal to the ε-bound. And the main 

contributions of this paper can be summarized as follows. First, an 

ε-dependent Lyapunov functional is constructed and an LMI-based 

method is proposed to establish sufficient conditions for the global 

asymptotic stability of the concerned systems. An upper bound for 

the time-scale parameter ε is determined such that the system is 

globally asymptotically stable for any ε less than or equal to the 

ε-bound. And the method can be applied to solve the stability of 

two-time-scale CNNs without time delays. Second, an optimization 

problem is formulated to get the best estimate of the ε-bound. 

Compared with the existing results, our results are more general 

and less conservative. 

The rest of this paper is organized as follows. In Section 2 , prob- 

lem formulation and preliminaries are provided. In Section 3 , main 

results are proposed. Three examples are given in Section 4 to 

illustrate the advantages of the main results. And Section 5 con- 

cludes the paper. 

Notations : The superscript T represents matrix transpose. For 

a column vector x = [ x 1 , x 2 , . . . , x n ] 
T , ‖ x ‖ is the Euclidean vector 

norm, i.e., ‖ x ‖ = ( 
∑ n 

i =1 x 
2 
i 
) 1 / 2 . If A is a symmetric matrix, A > 0 

means A is positive definite, and A < 0 means A is negative definite. 

For any matrix A and two symmetric matrices P, Q , the symmetric 

term in a symmetric matrix is denoted by ∗, that is, [
P A 

∗ Q 

]
= 

[
P A 

A 

T Q 

]
. 

2. Problem formulation and preliminaries 

Let 

S̄ i (t) = 

n p ∑ 

k =1 

m ik (t) y k = y T m i (t) , 

where 

y = (y 1 , y 2 , . . . , y n p ) 
T , ‖ y ‖ 

2 = y 2 1 + y 2 2 + ... + y n 
2 
p , 

m i (t) = (m i 1 , m i 2 , . . . , m in p ) 
T . 

Without loss of generality, assume the input stimuli y is nor- 

malized with unit magnitude ‖ y ‖ 2 = 1 , and take time-varying 

delays into account, then the state-space form of system (1) and 

(2) can be rewritten as follows: 

ε ˙ u i (t) = −a i u i (t) + 

n ∑ 

j=1 

ω i j g j (u j (t)) + 

n ∑ 

j=1 

ω 

1 
i j g j (u j (t − τi j (t))) 

+ b i ̄S i (t) , (3) 

˙ S̄ i (t) = −S̄ i (t) + g i (u i (t)) , (4) 

where u (t) = (u 1 (t) , u 2 (t ) , . . . , u n (t )) T , ω 

1 
i j 

is the interconnection 

weight of delayed feedback, g i ( u i ( t )) is the activation function, 

τ ij ( t ) are bounded and differentiable time-varying delays satis- 

fying 0 < τi j (t) ≤ τM 

i j 
, T̄ i = diag(τM 

i 1 
, τM 

i 2 
, . . . , τM 

in 
) , ˙ τi j (t) ≤ μi j < 1 , 

ηi j = 1 − μi j > 0 , �i = diag(ηi 1 , ηi 2 , . . . , ηin ) , i, j = 1 , 2 , . . . , n, and 

the others are the same as those in (1) and (2) . 

Assumption 2.1. The activation function g i ( u i ( t )) is continuous and 

satisfies 

0 ≤ g i (η) − g i (υ) 

η − υ
≤ δi , (5) 
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