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Tiedemann et al. (2015) [8] formulated multi-objective online problems and several 
measures of the competitive analysis, and showed best possible online algorithms for 
the multi-objective time series search problem with respect to those measures of the 
competitive analysis. In this paper, we present modified definitions of the competitive 
analysis for multi-objective online problems and propose a simple online algorithm 
Balanced Price Policy (bppk) for the multi-objective (k-objective) time series search 
problem. Under the modified framework, we show that the algorithm bppk is best possible
with respect to any measure of the competitive analysis and we also derive best possible 
values of the competitive ratio for the multi-objective time series search problem with 
respect to several natural measures of the competitive analysis.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Single-objective online optimization problems are fundamental in computing, communicating, and many other practi-
cal systems. To measure the efficiency of online algorithms for single-objective online optimization problems, Sleator and 
Tarjan [7] introduced a notion of competitive analysis. Since then extensive research has been made for diverse areas of 
single-objective online optimization problems, e.g., paging and caching (see [9] for a survey), metric task systems (see [5]
for a survey), asset conversion problems (see [6] for a survey), buffer management of network switches (see [4] for a sur-
vey), etc. In practice, we have many online problems of multi-objective nature, however, general framework of competitive 
analysis and definition of competitive ratio for multi-objective online problems are not known. Tiedemann et al. [8] were 
the first to introduce a framework of multi-objective online problems as an online version of multi-objective optimization 
problems [2] and to formulate a notion of the competitive ratio for multi-objective online problems as the extension of 
the competitive ratio for single-objective online problems. To define the competitive ratio for multi-objective (k-objective) 
online problems, Tiedemann et al. [8] regarded multi-objective online problems as a family of (possibly dependent) single-
objective online problems and applied a monotone function f : Rk → R to the family of the single-objective online problems. 
Let A be an algorithm for a multi-objective (k-objective) online problem. Then we regard the algorithm A as a family of 
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algorithms Ai for the ith objective. For c1, . . . .ck , where ci is the competitive ratio of the algorithm Ai , we say that the 
algorithm A is f (c1, . . . , ck)-competitive with respect to a monotone function f : Rk → R. In fact, Tiedemann et al. [8] de-
fined the worst component competitive ratio, the arithmetic mean component competitive ratio, and the geometric mean 
component competitive ratio by monotone functions f1(c1, . . . , ck) = max(c1, . . . , ck), f2(c1, . . . , ck) = (c1 + · · · + ck)/k, and 
f3(c1, . . . , ck) = (c1 × · · · × ck)

1/k , respectively.

1.1. Previous work

For the single-objective time series search problem (initially investigated by El-Yaniv et al. [3]), prices are revealed time 
by time and the algorithm tries to select a price as high as possible. Let m > 0 and M > m be the minimum and maximum 
values of possible prices, respectively, and let φ = M/m be the fluctuation ratio of possible prices. For the case that m and M
are known to online algorithms, El-Yaniv et al. [3] presented a (best possible) deterministic algorithm reservation price policy
rpp, which is 

√
φ-competitive, and a randomized algorithm exponential threshold expo, which is O (log φ)-competitive.

Tiedemann et al. [8] defined the multi-objective time series search problem by a natural extension of the single-objective 
time series search problem. For the multi-objective (k-objective) time series search problem, a vector �p = (p1, . . . , pk) of k
(possibly dependent) prices is revealed time by time and the algorithm tries to select a good2 price vector. For each 1 ≤ i ≤ k, 
let mi > 0 and Mi ≥ mi be the minimum and maximum values of possible prices for the ith component, respectively, and 
assume that mi and Mi are known to online algorithms. For each 1 ≤ i ≤ k, let itvi = [mi, Mi] be an interval of the prices 
for the ith component. Under the assumption that all of itv1 = [m1, M1], . . . , itvk = [mk, Mk] are real intervals, Tiedemann 
et al. [8] presented best possible online algorithms for the multi-objective time series search problem with respect to the 
monotone functions f1, f2, and f3, i.e., a best possible online algorithm for the multi-objective (k-objective) time series 
search problem with respect to the monotone function f1 [8, Theorems 1 and 2], a best possible online algorithm for the 
bi-objective time series search problem with respect to the monotone function f2 [8, Theorems 3 and 4], and a best possible 
online algorithm for the bi-objective time series search problem with respect to the monotone function f3 [8, §3.2].

1.2. Our contribution

As mentioned in Subsection 1.1, Tiedemann et al. [8] showed best possible online algorithms for the multi-objective time 
series search problem with respect to the monotone functions f1, f2 and f3, however, the optimality of the algorithms 
is discussed separately and independently with respect to each of the monotone functions f1, f2 and f3. In this paper, 
we present a simple online algorithm Balanced Price Policy bppk for the multi-objective time series search problem with 
respect to any monotone function f : Rk → R and in Theorems 3.1 and 3.2, we show that the algorithm bppk is best possible
with respect to any monotone continuous function f : Rk → R under the assumption that all of itv1 = [m1, M1], . . . , itvk =
[mk, Mk] are real intervals. In Theorem 4.1, we derive the best possible value of the competitive ratio for the bi-objective 
time series search problem with respect to the existing monotone function f2, which disproves the result that the algorithm 
in [8, Algorithm 2] is best possible for the bi-objective time series search problem with respect to f2. In Theorem 4.2, 
we derive the best possible value of the competitive ratio for the multi-objective time series search problem with respect 
to the existing monotone function f3, which extends the result that the algorithm in [8, Algorithm 2] is best possible 
for the bi-objective time series search problem with respect to f3. Finally in Theorem 4.3, we derive the best possible 
value of the competitive ratio for the multi-objective time series search problem with respect to a new monotone function 
f4(c1, . . . , ck) = min(c1, . . . , ck).

2. Preliminaries

For any pair of integers a ≤ b, we use [a, b] to denote a set {a, . . . , b} and for any pair of vectors �x = (x1, . . . , xk) ∈ Rk and 
�y = (y1, . . . , yk) ∈ Rk , we use �x 	 �y to denote a componentwise order, i.e., xi ≤ yi for each i ∈ [1, k]. Note that 	 is a partial 
order on Rk . We say that a function f : Rk → R is monotone if f (�x) ≤ f (�y) for any pair of vectors �x ∈ Rk and �y ∈ Rk such 
that �x 	 �y. Let R+ be the set of positive reals.

2.1. Multi-objective online problems

From the framework of multi-objective optimization problems [2], Tiedemann et al. [8] formulated multi-objective online
problems. In this subsection, we present multi-objective maximization problems (multi-objective minimization problems can 
be defined analogously).

For any integer k ≥ 1, let Pk = (I, X , h) be a multi-objective (k-objective) maximization problem, where I is a set of 
inputs, X (I) ⊆ Rk is a set of feasible solutions for each input I ∈ I , and h : I ×X → Rk+ is a function such that h(I, �x) ∈ Rk+
represents k objective values of a feasible solution �x ∈ X (I). For an input I ∈ I , an algorithm algk for Pk computes a 
feasible solution algk[I] ∈ X (I). For an input I ∈ I and a feasible solution algk[I] ∈ X (I), let algk(I) = h(I, algk[I]) ∈ Rk+

2 We use a “good” price vector to mean that it achieves a competitive ratio as low as possible with respect to the monotone function f : Rk → R.



https://isiarticles.com/article/113716

