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a b s t r a c t

Recent works in the literature have proposed quantum-like Bayesian networks as an alternative decision
model to make predictions in scenarios with high levels of uncertainty. Despite its promising capabilities,
there is still some resistance in the literature concerning the advantages of these quantum-like models
towards classical ones.

In this work, we developed a Classical Latent Bayesian network model and we compared it against its
quantum counterpart: the quantum-like Bayesian network. The comparisonwas done using awell known
Prisoner’s Dilemma game experiment from Shafir and Tversky (1992), in which the classical axioms of
probability theory are violated during a decision, and consequently the game cannot be simulated by pure
classicalmodels. In the end,we concluded that it is possible to simulate these violations using the Classical
Latent Variable model, but with an exponential increase in its complexity. Moreover, this classical model
cannot predict both observed and unobserved conditions from Shafir and Tversky (1992) experiments. The
quantum-like model, on the other hand, is shown to be able to accommodate both situations for observed
and unobserved events in a single model, making it more suitable and more general for these types of
decision problems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The task of determining human judgments under uncertainty
has got increasing attention in the scientific literature in the last
decade (Moreira & Wichert, 2016b). More specifically, several
models that are capable to predict or explain human decisions that
are inconsistent with the laws of classical probability theory and
logic (Crosson, 1999; Kuhberger, Komunska, & Josef, 2001; Lamb-
din & Burdsal, 2007; Tversky & Shafir, 1992) have been recently
proposed. These models turn to quantum probability to explain
human decision-making and are part of a new emerging discipline
called Quantum Cognition (Busemeyer, 2015; Wang, Busemeyer,
Atmanspacher, & Pothos, 2013).

Recent research shows that quantum-based probabilistic mod-
els are able to explain and predict scenarios that cannot be ex-
plained bypure classicalmodels (Bruza,Wang, &Busemeyer, 2015;
Busemeyer & Wang, 2015). However, there is still a big resistance
in the scientific literature to accept these quantum-based models.
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Many researchers believe that one canmodel scenarios that violate
the laws of probability and logic through classical probabilistic
decision models that are often used in machine learning (Mur-
phy, 2012). These violations of the laws of probability theory are
hard to explain through classical theory and can have different
types: violations to the Sure Thing Principle (Savage, 1954), dis-
junction/conjunction errors (Tversky & Kahneman, 1983), Ellsberg
(Ellsberg, 1961)/Allais (Allais, 1953) paradoxes, order effects (Sud-
man & Bradburn, 1974), etc.

To accommodate these violations, several quantum-likemodels
have been proposed in the literature. Note that, the term quantum-
like is simply the designation that it is used to refer to any model
that is applied in the domains outside of physics and that use
the mathematical formalisms of quantum mechanics, abstracting
them from any physical meaning and interpretations.

Although, the quantum cognition field is recent in the lit-
erature, there have been several different quantum-like models
proposed in the literature. These models range from dynamical
models (Busemeyer, Wang, & Lambert-Mogiliansky, 2009; Buse-
meyer, Wang, & Townsend, 2006; Pothos & Busemeyer, 2009),
which make use of unitary operators to describe the time evo-
lution since a participant is given a problem (or asked a ques-
tion), until he/she makes a decision, to models that are based on
contextual probabilities (Aerts & Aerts, 1994; Khrennikov, 2009b;
Yukalov & Sornette, 2011). Quantum-like dynamical models have
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also been proposed in the literature to accommodate violations
to the Prisoner’s Dilemma Game (Pothos & Busemeyer, 2009),
study the evolution of the interaction of economical agents in
markets (Haven & Khrennikov, 2013; Khrennikov, 2009a) or even
to specify a formal description of dynamics of epigenetic states of
cells interacting with an environment (Asano et al., 2013). On the
other hand, quantum-like models based on contextual probabili-
ties, explore the application of complex probability amplitudes to
define contexts that can interfere with the decision-maker (Khren-
nikov, 2005b, 2009b, 0000). For a survey about the applications of
quantum-like models for the Sure Thing Principle, the reader can
refer to Moreira and Wichert (2016b).

In the literature, it is clear and acceptable that simple and pure
probabilistic models cannot accommodate human decisions that
violate the laws of classical probability theory and logic (Buse-
meyer & Bruza, 2012). But can a more complex classical model
simulate the paradoxical findings reported in the literature? In
order to answer this question, we propose the application of latent
variables in classical models to accommodate these paradoxical
findings. By latent variables, we mean random variables that are
hidden, that is, they cannot be directly measured in an experi-
mental setting, but can be indirectly inferred from experimental
data. These variables bring great advantages to cognitive models,
because many observed variables can be condensed into a smaller
number of hidden variables, enabling a dimensionality reduction
of the model. For instance, in Psychology or Social Sciences, one
can use latent variables to summarise the influence of several
variables, such as beliefs, personality, social attitudes, etc., over the
concept of h uman behaviour (Bollen, 2002; Griffiths, Steyvers, &
Tenenbaum, 2007).

A well-known classical model that can include such depen-
dencies is the Bayesian network (Pearl, 1988). This model rep-
resents relationships between random variables (such as causal
and conditional dependencies) in an acyclic probabilistic graphical
structure. Bayesian networks are powerful inference models that
have been successfully applied over the years in different fields
of the literature, mainly in artificial intelligence, genetics, medical
decision-making, economics, etc.

In this work, we developed a classical Bayesian network that
makes use of latent variables and we compared it against its quan-
tum counterpart, the quantum-like Bayesian network, which was
previously proposed in Moreira and Wichert (2016a). In the end,
we conclude that it is possible to simulate the violations to the
Sure Thing Principle using the classical Bayesian network with
latent variables with an exponential increase in its complexity,
however this model cannot predict both observed and unobserved
experimental conditions from Shafir and Tversky (1992). On the
other hand, the quantum-like model is shown to be able to ac-
commodate both situations for observed and unobserved events in
a single and general model. Note that the Sure Thing Principle is a
concept widely used in game theory andwas originally introduced
by Savage (1954). This principle is fundamental in Bayesian proba-
bility theory and states that if one prefers action A over B under
state of the world X , and if one also prefers A over B under the
complementary state of theworldX , then one should always prefer
action A over B even when the state of the world is unspecified.

This manuscript is organised as follows. In Section 2, we in-
troduce a general definition for latent variables. In Section 3, we
present the prisoner’s dilemma game and several works of the
literature that report experiments, which violate the Sure Thing
Principle in this game. In Section 4, we propose a classical Bayesian
network model that makes use of Latent Variables to accommo-
date the paradoxical findings of the prisoner’s dilemma game. In
Section 5, it is introduced the quantum-like Bayesian network pro-
posed in thework ofMoreira andWichert (2016a) as an alternative
model to accommodate the several paradoxical findings reported

in the literature. In Section 6, we make a discussion about the
complexity involved in exact probabilistic inferences over classical
and quantum-like Bayesian networks. We end this work with
Section 7, which summarises themain points of this work: that the
quantum-like Bayesian network model poses advantages towards
the classical model with latent variables, since it can simulate
both observed and unobserved phenomena in a single network,
in contrast with the classical model requires extra hidden nodes
(contributing to a decrease in efficiency) and cannot accommodate
both observed and unobserved experimental conditions in a single
model.

2. Latent variables

Most of the times, the data that is recorded (or observed) does
not provide all the information that is needed to model a decision
scenario. In these situations, latent variables are used to model
complex patterns that we do not have the complete data for.

There is not a general and formal definition for latent variables
(Bollen, 2002). Since it is a concept that iswidely used across differ-
ent multidisciplinary areas, it can be defined differently according
to its application. However, a very simple and informal definition
can be given as variables that are not directly observed from data,
but can be inferred using the information of the variables thatwere
recorded (Anandkumar, Hsu, Javanmard, & Kakade, 0000). Instead
of specifying concrete relationships between variables, latent vari-
ables enable the abstraction of these relationships allowing amore
general representation, which can be inferred from the observed
variables.

In this work, we will use latent variables in a probabilistic
graphical model, more specifically in a Bayesian network. Gen-
erally speaking, a Bayesian network is an acyclic probabilistic
graphical model, which provides an intuitive way of specifying
probabilistic relationships and dependencies between random
variables (Griffiths et al., 2007). These relationships are specified
through a joint distribution over the set of all random variables
in the model, and each node specifies conditional dependencies
over its parent nodes. Under this representation, a random vari-
able becomes latent when it is unobserved (or unknown), which
suggests a local independencedefinition, according to Bollen (2002).
When a latent variable is constant (for instance, a prior probability
representing a person’s cognitive bias towards some topic), the
observed variables become independent. More formally, the in-
dependence between random variables and the latent variables is
given by Eq. (1).

Pr(X1, X2, . . . , Xn) = Pr(X1|h)Pr(X2|h) · · · Pr(Xn|h). (1)

Given a set of observed random variables X1, X2, . . . , Xn and
some vector of latent (hidden) variables h, the joint probability
Pr(X1, X2, . . . , Xn) corresponds to the product of the conditional
probabilities of each random variable Xi over the associated latent
variable, Pr(X1|h)Pr(X2|h) · · · Pr(Xn|h).

Consider Fig. 1. Suppose you have a parameterised acyclic prob-
abilistic graphical model over the parameter φ. We will assume
that node H represents a latent variable, because it is not directly
observed (or it is hidden) for some given reason: it might be too
expensive to collect its data, it might have been not recorded or
we simply might not have access to the process generating the
observed data.

Given a dataset of collected data D of sizeM , the above network
consists in a tuple ⟨h[m], x[m]⟩, where h is parameterised instance
of the latent variable H and x an instance of the random variable X .
The likelihood (a measure similar to a probability, which provides
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