ICI E INF

[International Journal of Approximate Reasoning](http://dx.doi.org/10.1016/j.ijar.2016.02.009) ••• (••••) •••-•••

1 Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/) 1

International Journal of Approximate Reasoning $4 \rightarrow 2$ 111 111 111 111 111 111 111 11

9 9 10

20 20

22 22

11 II. $\ln n$ d $\ln n$ Decoration in the set of $\frac{1}{N}$ $11 \atop 12$ Hybrid time Bayesian networks $\stackrel{\leftrightarrow}{\sim}$

 13 13 14 14 Manxia Liu ^a*,*1, Arjen Hommersom ^c*,*a*,*2, Maarten van der Heijden ^a*,*2, 15 **Peter J.F. Lucas** a,b¹⁵ 16 16

17 17 ^a *Radboud University, ICIS, Nijmegen, The Netherlands*

^b *Leiden University, LIACS, Leiden, The Netherlands*

18 18 ^c *Open University, MST, Heerlen, The Netherlands* 19 \sim 19 $\$

²¹ ARTICLE INFO ABSTRACT ²¹

Article history:

Received 6 November 2015 Received in revised form 19 February 2016 Accepted 28 February 2016

- Available online xxxx
-

Keywords: Continuous time Bayesian networks

Dynamic Bayesian networks Dynamic systems

²³ Article history: **Article history: Capturing heterogeneous dynamic systems in a probabilistic model is a challenging ²³** 24 24 problem. A single time granularity, such as employed by dynamic Bayesian networks, 25 25 provides insufficient flexibility to capture the dynamics of many real-world processes. The 26 Auchele 2010 2010 2010 alternative is to assume that time is continuous, giving rise to continuous time Bayesian 26 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 available probabilistic knowledge. In this paper, we present a novel class of models, ₂₉ Continuous time Bayesian networks **being a called hybrid time Bayesian networks**, which combine discrete-time and continuous-30 30 systems with regular and irregularly changing variables. We also present a mechanism 31 31 to construct discrete-time versions of hybrid models and an EM-based algorithm to learn ³² 52 the parameters of the resulting BNs. Its usefulness is illustrated by means of a real-world ³² 33 33 medical problem. time Bayesian networks. The new formalism allows us to more naturally model dynamic

34 34 © 2016 Elsevier Inc. All rights reserved.

39 39 **1. Introduction**

⁴¹ Many real-world systems exhibit complex and rich dynamic behavior. As a consequence, capturing these dynamics is an ⁴² integral part of developing models of physical-world systems. Time granularity is an important parameter in characterizing 42 43 dynamics as it determines the level of temporal detail in the model. In cases where one time granularity is coarser than 43 ⁴⁴ another, dealing with multiple time granularities becomes significantly important, e.g., in the context of mining frequent ⁴⁴ 45 patterns and temporal relationships in data streams and databases [\[2\].](#page--1-0) 45

⁴⁶ Bayesian networks (BNs) have been very successful in modeling complex situations involving uncertainty [\[3\].](#page--1-0) Dynamic ⁴⁶ ⁴⁷ Bayesian networks (DBNs) are part of the Bayesian network framework, supporting the modeling of dynamic probabilistic 47 ⁴⁸ systems [\[4\].](#page--1-0) DBNs extend standard Bayesian networks by assuming that changes in a process can be captured by a sequence 48 49 of states at discrete time points. Usually the assumption is made that the distribution of variables at a particular time point 49 50 is conditional only on the state of the system at the previous time point. A problem occurs if temporal processes of a 50 ⁵¹ system are best described using different rates of change, e.g., one temporal part of the process changes much faster than ⁵¹ 52 another. In that case, the whole system has to be represented using the finest time granularity, which is undesirable from a 52 53 53

59 59 <http://dx.doi.org/10.1016/j.ijar.2016.02.009>

 60 $^{0888-613\chi/\odot}$ 2016 Elsevier Inc. All rights reserved. 60

з в село в з
Зб 36 36 37 37 38 38 40 40 54 54 61 61

 55 \star This is an extended version of a conference paper with the same title [\[1\].](#page--1-0)

⁵⁶ 56 *E-mail addresses:* m.liu@cs.ru.nl (M. Liu), arjenh@cs.ru.nl (A. Hommersom), m.vanderheijden@cs.ru.nl (M. van der Heijden), peterl@cs.ru.nl (P.J.F. Lucas). 57 57 ¹ ML is supported by the China Scholarship Council.

⁵⁸ $\frac{2}{1}$ AH and MvdH are supported by the ITEA2 MoSHCA project (ITEA2-ip11027).

ARTICLE IN PRESS

 $\left(\begin{array}{c}\n\sqrt{11}\n\end{array}\right)$

2 and \vee \vee \vee \vee з в событь совмести в событь событь в событь производит в событь событь событь событь событь событь событь соб \downarrow \downarrow $\begin{pmatrix} 5 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{array}{ccc} 6 & \hspace{1.5cm} & \hspace{1.5cm} & \hspace{1.5cm} & \hspace{1.5cm} \circ \hspace{1.5cm$

7 and 2008 **Fig. 1.** Causal model for heart failure: CM = Contractility Myocardium, DT = Digitalis, LHT = Loss Heart Tissues, HA = Heart Attack, TROP = Troponin, HF ₈ 9 9 $=$ Heart Failure, BW $=$ Body Weight.

 10 ₁₁ modeling and learning perspective. In particular, if a variable is observed irregularly, much data on discrete-time points will $\frac{1}{11}$ $_{12}$ be missing and conditional probabilities will be hard to estimate. $_{12}$

₁₃ As an alternative to DBNs, temporal processes can be modeled as continuous time Bayesian networks (CTBNs), where $\frac{13}{13}$ $_{14}$ time acts as a continuous parameter [\[5\].](#page--1-0) In these models, the time granularity is infinitely small by modeling transition $_{14}$ ₁₅ rates rather than conditional probabilities. Thus, multiple time granularities, i.e., slow and fast transition rates, can easily ₁₅ ₁₆ be captured. A limitation from a modeling perspective is that all probabilistic knowledge, for example derived from expert the ₁₇ knowledge, has to be mapped to transition rates which are hard to interpret. Moreover, it is assumed that the transition ₁₇ ₁₈ rates, governing the time until a transition occurs, are exponentially distributed, which may not always be appropriate. ₁₈

₁₉ In this paper, we propose a new formalism, which we call *hybrid time Bayesian networks* (HTBNs), inspired by discrete-time ₁₉ $_{\rm 20}$ and continuous-time Bayesian networks. We develop the theoretical properties of HTBNs and show their practical use $_{\rm 20}$ ₂₁ by means of a medical example. HTBNs facilitate modeling the dynamics of both irregularly-timed random variables and ₂₁ $_{\rm 22}$ - random variables whose evolution is naturally described by discrete time. As a result, the new formalism increases the $^{-22}$ $_{23}$ modeling and analysis capabilities for dynamic systems.

 $_{24}$ In the next section we introduce the running, clinical example for the rest of this paper, followed by preliminaries on $_{24}$ $_{25}$ $\,$ DBNs and CTBNs to fix the notation. Then, in Section [4,](#page--1-0) we define HTBNs with their associated factorization, followed by a $\,$ $_{25}$ $_{\rm 26}$ $\,$ construction that allows transforming an HTBN into an equivalent BN. Subsequently we return to our running example and $\,$ $_{\rm 26}$ $_{\rm 27}$ demonstrate how the equivalent BN can be used to obtain a meaningful clinical simulation. The paper is concluded by a $_{\rm 27}$ 28 discussion. 28 discussion.

29 29

30 30 **2. Motivating example**

31 31 32 32 To illustrate the usefulness of the proposed theory, we consider the medical problem of heart failure and, in particular, 33 one possible cause of heart failure: heart attack (myocardial infarction). This usually occurs as the result of coronary artery 33 34 34 disease giving rise to reduced blood supply to the heart muscle (myocardium). One consequence is that part of the heart 35 – muscle will die, which is revealed later in a blood sample analysis in the lab by an increased level of particular heart muscle – 35 $_{36}$ proteins, in particular troponin. Loss of heart muscle will inevitably have an impact on the contractility of the myocardium, as 37 37 and thus heart function will be negatively affected. This is known as *heart failure*. In particular, the heart fails with respect 38 38 to its function as a pump. This will enforce an increase in the amount of extracellular fluid (the patient is flooded with 39 water), which can be measured quite simply by means of the body weight. With regard to treatment, digitalis is considered 39 40 40 as one of the drugs to improve contractility. This causal knowledge is formalized as a directed graph in Fig. 1.

 41 Heart attacks can occur repeatedly in patients, although after some interval of time, and this may negatively affect heart 42 function. After administration of digitalis it will take some time before the drug has a diminishing effect on heart failure. 43 Thus, the course of heart failure will likely depend on various factors, and how they interact. Of particular importance here 44 is the dynamic over time of the probability distributions.

 45 In modeling processes such as heart failure, it is essential to notice the existence of different time granularities. There 46 are *discrete*, *regular* variables which are observed regularly such as a routine checkup for body weight and a regular intake 47 of a drug. On the other hand, some variables are observed *irregularly*, such as the indicator troponin which is elevated 48 after about half an hour after damage to the heart muscle is obtained; however its measurement is repeated with time 49 intervals that increase after the patient's condition has been stabilized. Clearly, it is not possible to obtain a satisfactory 50 representation of the clinical evolution of heart failure using only discrete time, regular or irregular, or continuous time. In 51 the remainder of this paper we propose a method to deal with these heterogeneous time aspects.

52 52

54 54

53 53 **3. Preliminaries**

 55 We start by introducing Bayesian networks, dynamic Bayesian networks and continuous time Bayesian networks. In the 56 following, upper-case letters, e.g. *X*, *Y* , or upper-case strings, e.g. HA, denote random variables. We denote the values of a 57 variable by lower-case letters, e.g. *x*, or by *T* or *F* , short for *true* and *false*. Note that all variables considered here have a 58 finite domain of values. Continuous-time variables are variables that have a finite domain of values over infinite trajectories. 59 For discrete-time variables time changes regularly, evenly, whereas continuous-time variables are irregularly spaced over 60 time. In what follows we will make use of a successor function *s*, which is defined on a countable, linearly ordered set of 61 numbers *Z* in which every element $z_i \in Z$ with index *i* is mapped to element $s(z_i) = z_{i+1} \in Z$ (with the potentially greater 61

ِ متن کامل مقا<mark>ل</mark>ه

- ✔ امکان دانلود نسخه تمام متن مقالات انگلیسی √ امکان دانلود نسخه ترجمه شده مقالات ✔ پذیرش سفارش ترجمه تخصصی ✔ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله √ امکان دانلود رایگان ٢ صفحه اول هر مقاله √ امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب ✔ دانلود فورى مقاله پس از پرداخت آنلاين ✔ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- **ISIA**rticles مرجع مقالات تخصصى ايران