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Capturing heterogeneous dynamic systems in a probabilistic model is a challenging 
problem. A single time granularity, such as employed by dynamic Bayesian networks, 
provides insufficient flexibility to capture the dynamics of many real-world processes. The 
alternative is to assume that time is continuous, giving rise to continuous time Bayesian 
networks. Here the problem is that the level of temporal detail is too precise to match 
available probabilistic knowledge. In this paper, we present a novel class of models, 
called hybrid time Bayesian networks, which combine discrete-time and continuous-
time Bayesian networks. The new formalism allows us to more naturally model dynamic 
systems with regular and irregularly changing variables. We also present a mechanism 
to construct discrete-time versions of hybrid models and an EM-based algorithm to learn 
the parameters of the resulting BNs. Its usefulness is illustrated by means of a real-world 
medical problem.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many real-world systems exhibit complex and rich dynamic behavior. As a consequence, capturing these dynamics is an 
integral part of developing models of physical-world systems. Time granularity is an important parameter in characterizing 
dynamics as it determines the level of temporal detail in the model. In cases where one time granularity is coarser than 
another, dealing with multiple time granularities becomes significantly important, e.g., in the context of mining frequent 
patterns and temporal relationships in data streams and databases [2].

Bayesian networks (BNs) have been very successful in modeling complex situations involving uncertainty [3]. Dynamic 
Bayesian networks (DBNs) are part of the Bayesian network framework, supporting the modeling of dynamic probabilistic 
systems [4]. DBNs extend standard Bayesian networks by assuming that changes in a process can be captured by a sequence 
of states at discrete time points. Usually the assumption is made that the distribution of variables at a particular time point 
is conditional only on the state of the system at the previous time point. A problem occurs if temporal processes of a 
system are best described using different rates of change, e.g., one temporal part of the process changes much faster than 
another. In that case, the whole system has to be represented using the finest time granularity, which is undesirable from a 
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Fig. 1. Causal model for heart failure: CM = Contractility Myocardium, DT = Digitalis, LHT = Loss Heart Tissues, HA = Heart Attack, TROP = Troponin, HF 
= Heart Failure, BW = Body Weight.

modeling and learning perspective. In particular, if a variable is observed irregularly, much data on discrete-time points will 
be missing and conditional probabilities will be hard to estimate.

As an alternative to DBNs, temporal processes can be modeled as continuous time Bayesian networks (CTBNs), where 
time acts as a continuous parameter [5]. In these models, the time granularity is infinitely small by modeling transition 
rates rather than conditional probabilities. Thus, multiple time granularities, i.e., slow and fast transition rates, can easily 
be captured. A limitation from a modeling perspective is that all probabilistic knowledge, for example derived from expert 
knowledge, has to be mapped to transition rates which are hard to interpret. Moreover, it is assumed that the transition 
rates, governing the time until a transition occurs, are exponentially distributed, which may not always be appropriate.

In this paper, we propose a new formalism, which we call hybrid time Bayesian networks (HTBNs), inspired by discrete-time 
and continuous-time Bayesian networks. We develop the theoretical properties of HTBNs and show their practical use 
by means of a medical example. HTBNs facilitate modeling the dynamics of both irregularly-timed random variables and 
random variables whose evolution is naturally described by discrete time. As a result, the new formalism increases the 
modeling and analysis capabilities for dynamic systems.

In the next section we introduce the running, clinical example for the rest of this paper, followed by preliminaries on 
DBNs and CTBNs to fix the notation. Then, in Section 4, we define HTBNs with their associated factorization, followed by a 
construction that allows transforming an HTBN into an equivalent BN. Subsequently we return to our running example and 
demonstrate how the equivalent BN can be used to obtain a meaningful clinical simulation. The paper is concluded by a 
discussion.

2. Motivating example

To illustrate the usefulness of the proposed theory, we consider the medical problem of heart failure and, in particular, 
one possible cause of heart failure: heart attack (myocardial infarction). This usually occurs as the result of coronary artery 
disease giving rise to reduced blood supply to the heart muscle (myocardium). One consequence is that part of the heart 
muscle will die, which is revealed later in a blood sample analysis in the lab by an increased level of particular heart muscle 
proteins, in particular troponin. Loss of heart muscle will inevitably have an impact on the contractility of the myocardium, 
and thus heart function will be negatively affected. This is known as heart failure. In particular, the heart fails with respect 
to its function as a pump. This will enforce an increase in the amount of extracellular fluid (the patient is flooded with 
water), which can be measured quite simply by means of the body weight. With regard to treatment, digitalis is considered 
as one of the drugs to improve contractility. This causal knowledge is formalized as a directed graph in Fig. 1.

Heart attacks can occur repeatedly in patients, although after some interval of time, and this may negatively affect heart 
function. After administration of digitalis it will take some time before the drug has a diminishing effect on heart failure. 
Thus, the course of heart failure will likely depend on various factors, and how they interact. Of particular importance here 
is the dynamic over time of the probability distributions.

In modeling processes such as heart failure, it is essential to notice the existence of different time granularities. There 
are discrete, regular variables which are observed regularly such as a routine checkup for body weight and a regular intake 
of a drug. On the other hand, some variables are observed irregularly, such as the indicator troponin which is elevated 
after about half an hour after damage to the heart muscle is obtained; however its measurement is repeated with time 
intervals that increase after the patient’s condition has been stabilized. Clearly, it is not possible to obtain a satisfactory 
representation of the clinical evolution of heart failure using only discrete time, regular or irregular, or continuous time. In 
the remainder of this paper we propose a method to deal with these heterogeneous time aspects.

3. Preliminaries

We start by introducing Bayesian networks, dynamic Bayesian networks and continuous time Bayesian networks. In the 
following, upper-case letters, e.g. X , Y , or upper-case strings, e.g. HA, denote random variables. We denote the values of a 
variable by lower-case letters, e.g. x, or by T or F , short for true and false. Note that all variables considered here have a 
finite domain of values. Continuous-time variables are variables that have a finite domain of values over infinite trajectories. 
For discrete-time variables time changes regularly, evenly, whereas continuous-time variables are irregularly spaced over 
time. In what follows we will make use of a successor function s, which is defined on a countable, linearly ordered set of 
numbers Z in which every element zi ∈ Z with index i is mapped to element s(zi) = zi+1 ∈ Z (with the potentially greater 
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