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Computing posterior and marginal probabilities constitutes the backbone of almost all 
inferences in Bayesian networks. These computations are known to be intractable in 
general, both to compute exactly and to approximate (e.g., by sampling algorithms). While 
it is well known under what constraints exact computation can be rendered tractable 
(viz., bounding tree-width of the moralized network and bounding the cardinality of the 
variables) it is less known under what constraints approximate Bayesian inference can 
be tractable. Here, we extend the existing formal framework of fixed-error randomized 
tractability (a randomized analogue of fixed-parameter tractability), and use it to address 
this problem, both by re-interpreting known results from the literature and by providing 
some additional new results, including results on fixed parameter tractable de-randomiz-
ation of approximate inference.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Computing posterior and marginal probabilities constitutes the backbone of almost all inferences in Bayesian networks. 
These computations are known to be intractable in general [6]; moreover, it is known that approximating these computations 
is also intractable. To be precise, deterministic approximation is proven to be NP-hard by itself [8]; tractable randomized ap-
proximation is also ruled out unless NP ⊆ BPP. To render exact computation tractable, bounding the tree-width of the 
moralized network is both necessary (under the assumption of the Exponential Time Hypothesis) [23] and (with bounded 
cardinality) sufficient [24]. For approximate inference, the picture is less clear, in part because there are multiple approx-
imation strategies that all have different properties and characteristics. First of all, it matters whether we approximate 
marginal, respectively conditional probabilities. The approximation error can be measured either absolutely (also called 
additive approximation), i.e., independent of the probability that is to be approximated, or relative (also called multiplica-
tive approximation) to this probability. Finally, the approximation algorithm can be deterministic (always guaranteeing a 
bound on the error) or randomized (guaranteeing a bounded error with high probability). In this broad array there are a 
few (somewhat isolated) tractability results [7–9,14,29,30], but an overview of what can and cannot render approximate 
inference tractable is still lacking.

In this paper we extend and apply fixed-error randomized tractability analysis [21], a recent randomized analogue of param-
eterized complexity analysis [10], to systematically address this issue. We consider both absolute and relative approximation, 
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Fig. 1. The Student network, adapted from Figure 3.3 in [18].

using both randomized and deterministic algorithms, for the approximation of both marginal and conditional probabilities. 
We re-interpret old results and provide new results in terms of fixed-parameter or fixed-error tractability and intractability. 
In addition to identifying a number of corollaries from known results, some particular new contributions in this paper are 
de-randomization results of randomized approximations for fixed degree networks.

The remainder of this paper is structured as follows. After introducing the necessary preliminaries on Bayesian networks, 
approximation strategies, and parameterized computational complexity in Section 2, we introduce and extend fixed-error 
randomized tractability analysis in Section 3. We give an overview of results from the literature in Section 4.1 and some 
new results in Section 4.2. The paper is concluded in Section 5.

2. Preliminaries

In this section we introduce notation and provide for some preliminaries and our notational conventions in Bayesian 
networks, approximation algorithms, and complexity theory.

2.1. Bayesian networks

A (discrete) Bayesian network B is a graphical structure that models a set of discrete random variables, a joint proba-
bility distribution over these variables, and the conditional independences in this distribution [27]. B includes a directed 
acyclic graph GB = (V, A), modeling the variables and conditional independences in the network, and a set of parameter 
probabilities Pr in the form of conditional probability tables (CPTs), capturing the strengths of the relationships between the 
variables. The network thus describes a joint probability distribution Pr(V) = ∏n

i=1 Pr(V i | π(V i)) over its variables, where 
π(V i) denotes the parents of V i in GB . We define the size |B| of the network to be the number of bits needed to rep-
resent both GB and Pr. Our notational convention is to use upper case letters to denote individual nodes in the network, 
upper case bold letters to denote sets of nodes, lower case letters to denote value assignments to nodes, and lower case 
bold letters to denote joint value assignments to sets of nodes. The set of values vi that a variable V can take is denoted 
as �(V ).

Fig. 1 presents the running example we will use in this paper, the Student network introduced in [18]. Here, we model 
five random variables: The difficulty of a course D , with values difficult (d) and easy (¬d); the intelligence of the student I , 
with values intelligent (i) and unintelligent (¬i); the grade G of the course, where gh , gm , and gl represent high, middle, 
and low grades, respectively; the SAT score S of the student (sh = low, sl = high); and finally whether one is willing to write 
a strong reference letter (L = l if yes, L = ¬l if no).

In the context of this paper we are particularly interested in the computation of marginal and conditional probabilities 
from a Bayesian network, defined as computational problems as follows:

MProb

Input: A Bayesian network B with designated subset of variables H and a corresponding joint value assignment h to H.
Output: Pr(h).

CProb

Input: A Bayesian network B with designated non-overlapping subsets of variables H and E and corresponding joint 
value assignments h to H and e to E.
Output: Pr(h | e).

For example, in the student network it can be computed that Pr(S = sh) = 0.275 (i.e., the prior probability of scoring high 
at a SAT test is 0.275) and that Pr(L = l | I = ¬i) = 0.389 (i.e., the probability that you write a strong recommendation letter 
for an unintelligent student is 0.389). It is well known that both MProb and CProb are intractable (NP-hard) problems to 
compute exactly, that is, there is strong evidence that there cannot exist a worst-case polynomial time algorithm for either 
of them.
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