
JID:IJA AID:8152 /FLA [m3G; v1.224; Prn:8/11/2017; 11:29] P.1 (1-21)

International Journal of Approximate Reasoning ••• (••••) •••–•••

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

Efficient belief propagation in second-order Bayesian network 

for singly-connected graphs

Lance Kaplan a,∗, Magdalena Ivanovska b

a US Army Research Lab, Adelphi, MD, United States
b University of Oslo, Oslo, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 April 2017
Received in revised form 26 October 2017
Accepted 27 October 2017
Available online xxxx

Keywords:
Second-order Bayesian networks
Belief propagation
Uncertain probabilistic reasoning
Beta distribution

Second-order Bayesian networks extend Bayesian networks by incorporating uncertainty 
in the conditional probabilities. This paper develops a method for inference in a binary 
second-order Bayesian network with a singly-connected graph that builds upon the 
message-passing algorithm for regular belief propagation by leveraging recent develop-
ments in subjective logic. The method applies the moment-matching approach to the 
Beta representation of the uncertain probabilities. We provide experimental analysis which 
shows that the introduced method effectively captures the bounds for the actual error 
in a consistent manner and, at the same time, does not decrease the efficiency of the 
performance compared to the other similar approaches.

Published by Elsevier Inc.

1. Introduction

Effective decision making requires the understanding of the probability distribution of different outcomes to compute an 
expected utility [1]. However, the understanding of the outcome distribution must be learned from relevant prior experi-
ences so that one can determine the distribution of unknown quantities in light of other observed quantities. These prior 
experiences can be subjective in that a subject matter expert uses his/her recollection of experiences in past situations to 
determine the probability of various outcomes. Alternatively, these prior experiences can be objective in that past outcomes 
have been recorded to determine the outcome probabilities. In many business scenarios that are trying to predict the be-
haviors of consumers, the availability of big data enables reasonable characterization of the outcome probabilities. However 
in many scenarios dealing with adversarial behaviors such as military campaigns and counterterrorism operations, training 
data is sparse and/or subject matter experts have limited experience to elicit the probabilities. As a result, these probabili-
ties are highly uncertain and traditional decision making aids are unable to capture the risk associated to operating under 
uncertainty. Recent efforts are investigating decision making in environments with highly uncertain probabilities [2,3].

More precisely, decision making requires the integration of evidence from multiple confounding factors that determine 
the likelihood of the possible outcomes. It is common to represent these confounding factors by a probabilistic graphical 
model [4]. Effective decision making then becomes the determination of the outcome probabilities through inference over 
the observed factors (or variables). The prior experiences determine the statistical correlations between the variables at 
decision making time using past instantiations of the values of these variables. Many probabilistic graphical models exist 
including Bayesian networks (BNs), Markov random fields, factor graphs, etc. BNs [5] have proven to be an effective tool for 
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probabilistic reasoning. However, they require significant amounts of prior experiences, subjective and/or objective, to elicit 
the necessary input conditional probabilities. Uncertainty about probabilities is known as second-order uncertainty [6], and 
standard BNs processing is unable to accommodate such uncertainty.

There are a number of theories for reasoning under uncertainty trying to extend Bayesian reasoning, with the theory of 
imprecise probabilities [7], credal networks [8], and the belief theory of evidence [9] being some of the more established 
ones. More recently, subjective logic (SL) was introduced to connect uncertain probabilistic reasoning with second-order 
Bayes [10,11]. Specifically, SL operates with subjective opinions which map to Dirichlet distributions for the probabilities. 
A subjective opinion is a belief-and-uncertainty representation of an unknown probability distribution of a random variable, 
which together with an assumed prior distribution projects into an estimate for the actual probability distribution of the 
variable. This estimate equals the mean of the corresponding Dirichlet distribution.

The operators within SL are mostly designed using this connection to Dirichlet distributions as a guiding principle. 
Some of the operators such as deduction, however, make looser connections to the Dirichlet distribution and employ an 
uncertainty maximization principle to limit the belief commitments [12,13]. Alternative operators that select the uncertainty 
to match the variance of the Dirichlet distribution have been proposed in [14].

Recently, subjective Bayesian networks were introduced to extend BNs such that the conditional probabilities become 
conditional subjective opinions [15,16]. There are two major approaches towards inference in subjective Bayesian networks. 
The first performs inference composing traditional SL operators, and an overview of this approach is discussed in [11]. The 
work in this paper belongs to the second approach that makes use of the equivalent Dirichlet representation of subjective 
opinions and applies the moment matching method to determine the uncertainty. An initial example of the latter approach 
was presented for a three-node network in [16]. [17] expands on that approach by developing a more general subjective be-
lief propagation method that is able to determine the marginal subjective opinions for any variable in a subjective Bayesian 
network with a tree structure. In essence, inference over subjective Bayesian networks considers second-order Bayesian rea-
soning where the conditional probabilities are random variables drawn from Dirichlet distributions. In the sequel, we refer 
to subjective Bayesian networks instead as second-order Bayesian networks (SOBNs) to clarify this distinction.

This paper generalizes further the second approach developing a second-order belief propagation method for reasoning 
in a SOBN with a singly-connected graph. The method generalizes Pearl’s message-passing algorithm for regular belief prop-
agation (BP) from [18] to incorporate uncertainty about the probabilities in a principled manner. We restrict our attention 
to binary random variables in which case the corresponding Dirichlet representation becomes a Beta distribution over one 
of the probability values. Then the probability messages between the nodes are shared in the form of Beta distributions and 
the reasoning through the moment matching method determines a Beta distribution of the result by matching the mean 
and variance of the actual distribution.

In other words, this work considers a set of binary variables whose influence on each other is represented by a ground 
truth BN. The structure of the network is assumed to be known, but the conditional probabilities must be learned by observ-
ing the joint values of variables and their parents over a number of independent instantiations of the network variables. In 
light of a uniform prior for the conditional probabilities, the observation of the Bernoulli trials lead to uncertain conditional 
probabilities whose values are known within Beta distributions. Given these second-order conditional probabilities and a 
set of the observed variables as evidence, this papers develops an efficient inference method to determine the second-order 
marginal probabilities of all the unobserved variables conditioned on the evidence. Each marginal probability is a query 
that is actually a random variable, and the inference method characterizes both the query value and its spread as a Beta 
distribution. The second-order probabilities should accurately reflect the uncertainty of the query answer in light of the 
limited training examples to learn an estimate for the parameters of the BN, e.g., the conditional probabilities. In essence, 
this paper provides an efficient method for second order Bayesian reasoning over uncertain BNs.

Other methods do exist that incorporate uncertainty with reasoning over probabilistic graphical models. For instance, 
the valuation-based system (VBS) provides a framework to incorporate extensions of Bayes’ rule using various uncertainty 
theories [19]. However, the framework does not connect the uncertainties to second-order Bayes, which is what makes rea-
soning over SOBNs attractive. SDL-Lite is a recent framework that combines subjective logic opinions with description logic 
to reason over uncertain probabilistic graphs [20]. It develops a subjective semantic interpretation of the DL-Lite operators 
and finds the most general opinions to satisfy this semantics. While SDL-Lite considers the connection of subjective logic 
opinions and evidence to build up a Dirichlet distribution, it does not explicitly incorporate the properties of the Dirichlet 
distribution to define the semantic interpretation of the logical operators. Credal networks [8] are extensions of BNs where 
the marginal and conditional probabilities belong to a convex set of probability distributions generated by linear constrains. 
In the case of binary random variables, credal sets coincide with a set of intervals, i.e. the probability values belong to closed 
intervals. The 2U algorithm extends the message-passing approach for the latter case of credal networks [21]. However, the 
2U algorithm is not designed to capture second order knowledge of the distribution of the conditionals. Rather, it assumes 
knowledge of the lower and upper bounds for the expected values of the conditional probabilities. There has been work on 
reasoning in uncertain probabilistic graphs also in the framework of belief theory and the transferable belief model [22]. The 
belief propagation in belief networks that have Dempster–Shafer belief functions instead of probability functions associated 
with each node, is done in [22] by applying the generalized Bayes’ theorem and the disjunctive rule of combination. Again, 
these methods do not connect the uncertainties to second-order Bayes.

It should be noted that Beta (and more generally Dirichlet) distributions are commonly used in learning the parameters 
for discrete variables in BNs. Latent variable models virtually create additional latent variables whose values are parameters 
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