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Learning a Bayesian networks with bounded treewidth is important for reducing the 
complexity of the inferences. We present a novel anytime algorithm (k-MAX) method 
for this task, which scales up to thousands of variables. Through extensive experiments 
we show that it consistently yields higher-scoring structures than its competitors on 
complete data sets. We then consider the problem of structure learning from incomplete 
data sets. This can be addressed by structural EM, which however is computationally 
very demanding. We thus adopt the novel k-MAX algorithm in the maximization step of 
structural EM, obtaining an efficient computation of the expected sufficient statistics. We 
test the resulting structural EM method on the task of imputing missing data, comparing 
it against the state-of-the-art approach based on random forests. Our approach achieves 
the same imputation accuracy of the competitors, but in about one tenth of the time. 
Furthermore we show that it has worst-case complexity linear in the input size, and that 
it is easily parallelizable.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The size of an explicit representation of the joint distribution of n categorical random variables is exponential in n. 
Bayesian networks [1] compactly represent joint distributions by exploiting independence relations and encoding them 
into a directed acyclic graph (DAG), also referred to as structure. Yet, algorithms able to perform structure learning from 
thousands of variables have been devised only very recently for Bayesian networks [2,3] and for chordal log-linear graphical 
models (that can be exactly mapped on Bayesian networks) [4,5].

Given a Bayesian network, the task of computing the marginal distribution of a set of variables, possibly given evidence 
on another set of variables, is called inference. The complexity of exact inference grows exponentially in the treewidth [1, 
Chap. 7] of the DAG, under the exponential time hypothesis [6]. In order to allow tractable inference we thus need to learn 
Bayesian networks with a bounded-treewidth structure; this problem is NP-hard [7].

Most research on learning bounded-treewidth Bayesian networks adopts a score-based approach. The score measures 
the fit of the DAG to the data; the goal is hence to find the highest-scoring DAG that respects the treewidth bound. Exact 
methods [7–9] exist, but their applicability is restricted to small domains. Approximate approaches that scale up to some 
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hundreds of variables [10,11] have been more recently proposed. A recent breakthrough has been achieved by the k-greedy 
algorithm [3]. It consistently yields higher-scoring DAGs than its competitors and it scales to several thousands of variables.

In this paper we present a new algorithm called k-MAX, which improves over k-greedy. Both k-MAX and k-greedy are 
anytime algorithms: they can be stopped at any moment, yielding the current best solution. k-MAX adopts a set of more 
sophisticated heuristics compared to k-greedy; as a result it consistently yields higher-scoring DAGs than both k-greedy and 
other competitors, as demonstrated by our extensive experiments on complete data sets.

Structure learning algorithms commonly assume data sets to be complete; yet real data sets are often incomplete. Struc-
ture learning on incomplete data sets can be accomplished via the structural expectation-maximization (SEM) algorithm [12], 
which alternates between an estimation of the sufficient statistics given the current model (expectation step), and the 
search of a new model given the expected sufficient statistics (maximization step). Yet, SEM is computationally demanding: 
in particular the expectation step requires computing several inferences, which might become prohibitive if the model has 
unbounded treewidth and/or there are many missing data whose actual value has to be inferred. We adopt k-MAX as the 
structure learning algorithm within SEM; in this way we obtain a fast implementation of SEM, since the bounded-treewidth 
structures learned in the different iterations perform efficient inferences. To the best of our knowledge, this is the first 
implementation of SEM that is able to scale to thousands of variables.

To test our method, we use the Bayesian networks learned by SEM in order to perform data imputation. We consider as a 
competitor a recent method for data imputation based on random forests [13] and we compare the two approaches on data 
sets with different degrees of missingness. The two approaches achieve the same imputation accuracy, but our approach is 
faster by almost one order of magnitude. Furthermore we show that the complexity of our method scales linearly in the 
input size (Subsec. 7.4), and that it is easily parallelizable (Subsec. 7.5). To the best of our knowledge, it is the first approach 
in the literature able to do so.

In Section 2 we present the technical background of the paper. In Section 3 we detail our approach for bounded-
treewidth structure learning, k-MAX. In Section 4 and 5 we evaluate its performance against existing state-of-the-art 
approaches. In Section 6 we present how k-MAX can be used in the SEM algorithm, obtaining the SEM-k-MAX algorithm. 
It is evaluated in Section 7 on the task of data imputation against the state-of-the-art approach. Section 8 concludes our 
paper.

The software of this paper is available from http :/ /ipg .idsia .ch /software /blip, together with supplementary material con-
taining the detailed results of our experiments.

2. Treewidth and k-trees

Intuitively, the treewidth k quantifies the extent to which a graph resembles a tree. Following the terminology of [14]
we now provide a formal definition. Let us recall that a clique of an undirected graph is a subset of its nodes such that 
every two distinct nodes are linked by an edge. Moreover, a clique is maximal if it is not a subset of a larger clique.

Treewidth of an undirected graph. We denote an undirected graph by H = (V , E) where V is the vertex set and E is 
the edge set. An undirected graph is triangulated when every cycle of length greater than or equal to 4 has a chord, that 
is, an edge connecting two non-consecutive nodes in the cycle [1, Def. 9.16]. Triangulated graphs are also called chordal
graphs. The triangulation of a graph is the operation of adding chords until the graph is triangulated. The treewidth of a 
triangulated graph is the size of its largest clique minus one. The treewidth of H is the minimum treewidth among all the 
possible triangulations of H .

Treewidth of a Bayesian network. The moral graph of the DAG associated to a Bayesian network is an undirected graph that 
includes an edge (i − j) for every edge (i → j) in the DAG and an edge (p − q) for every pair of edges (p → i), (q → i) in 
the DAG. The treewidth of the DAG is the treewidth of its moral graph.

2.1. k-trees

A k-tree is an undirected edge-maximal graph of treewidth k, that is, the addition of any edge to the k-tree increases its 
treewidth. It is defined inductively as follows [15]. Base case: a clique with (k + 1) nodes is a k-tree. Inductive step: given a 
k-tree Hn on n nodes, a k-tree Hn+1 on (n + 1) nodes is obtained by connecting the (n + 1)-th node to a k-clique of Hn

(a k-clique is a clique over k nodes). See Fig. 1 for an example. As a final remark, a sub-graph of a k-tree is called partial 
k-tree; its treewidth is at most k.

3. Structure learning of Bayesian networks

We consider the problem of learning the structure of a Bayesian network from a complete data set. The set of n categor-
ical random variables is X = {X1, ..., Xn}. The goal is to find the highest-scoring bounded-treewidth DAG G = (V , E), where 
V is the collection of nodes and E is the collection of arcs. E can be represented by the set of parents �1, ...,�n of all 
variables.

Structure learning is usually accomplished in two steps. First, parent set identification is the identification of a list (cache) 
Li of candidate parent sets independently for each variable Xi . Second, structure optimization is the assignment of a parent 
set to each node in order to maximize the score of the resulting DAG.
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