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The majority of Bayesian networks learning and inference algorithms rely on the assump-
tion that all random variables are discrete, which is not necessarily the case in real-
world problems. In situations where some variables are continuous, a trade-off between 
the expressive power of the model and the computational complexity of inference has 
to be done: on one hand, conditional Gaussian models are computationally efficient but 
they lack expressive power; on the other hand, mixtures of exponentials (MTE), basis 
functions (MTBF) or polynomials (MOP) are expressive but this comes at the expense of 
tractability. In this paper, we introduce an alternative model called a ctdBN that lies in 
between. It is composed of a “discrete” Bayesian network (BN) combined with a set of 
univariate conditional truncated densities modeling the uncertainty over the continuous 
random variables given their discrete counterpart resulting from a discretization process. 
We prove that ctdBNs can approximate (arbitrarily well) any Lipschitz mixed probability 
distribution. They can therefore be exploited in many practical situations. An efficient 
inference algorithm is also provided and its computational complexity justifies theoretically 
why inference computation times in ctdBNs are very close to those in discrete BNs. 
Experiments confirm the tractability of the model and highlight its expressive power, 
notably by comparing it with BNs on classification problems and with MTEs and MOPs 
on marginal distributions estimations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For several decades, Bayesian networks (BN) [1] have been successfully exploited for dealing with uncertainties. Their 
popularity has stimulated the development of many efficient learning and inference algorithms [2–6]. Whilst these al-
gorithms are relatively well understood when they involve only discrete variables, their ability to cope with continuous 
variables is often unsatisfactory. Dealing with continuous random variables is much more complicated than dealing with 
discrete ones and one actually has to trade-off between the expressive power of the uncertainty model and the compu-
tational complexity of its learning and inference mechanisms. Conditional Gaussian models and their mixing with discrete 
variables [7–9] lie on one side of the spectrum. They compactly represent multivariate Gaussian distributions. Their infer-
ence mechanisms are computationally very efficient but their main drawback is that they lack expressive power. Indeed, 
although Conditional Linear Gaussian (CLG) models can easily encode conditional independences between random variables, 
the density functions of their continuous random variables are required to be Normal distributions whose parameters de-
pend linearly on the values of their parents. They are therefore unable to represent models where dependences between 
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the continuous random variables are nonlinear. In addition, they are not very well suited to represent models in which ran-
dom variables are not distributed w.r.t. Normal distributions. On the other side of the spectrum, there are more expressive 
models like mixtures of exponentials (MTE) [10–12], mixtures of truncated basis functions (MTBF) [13,14] and mixtures of 
polynomials (MOP) [15–17]. Those can approximate very well density functions but this comes at the expense of tractabil-
ity: their exact inference computation times tend to grow exponentially with the number of continuous variables, which 
makes them unusable when they contain hundreds of random variables.

In this paper, we propose an alternative model that lies in between these two extremes. The key idea is to discretize the 
random variables, thereby mapping each (continuous) value of their domain into an interval within a finite set of intervals. 
Of course, whenever some discretization is performed, some information about the continuous random variables is lost. But 
this can be significantly alleviated by modeling the distribution of the continuous values within each discretization interval 
by a density function which may not necessarily be a uniform distribution (which is the implicit assumption when using a 
classical discretization). The set of density functions over all the intervals of a continuous variable constitutes its “conditional 
truncated density” given its discretized counterpart. Now, our uncertainty model is a (discrete) BN over the set of discrete and 
discretized random variables combined with the set of conditional truncated densities assigned to the continuous random 
variables that were discretized. This model is therefore called “conditional truncated densities Bayesian network”, or ctdBN for 
short. It represents compactly mixed probability distributions. The model is derived from the result of an algorithm for 
learning BNs from datasets containing both discrete and continuous random variables [18].

By assigning conditional truncated densities to continuous variables, our model gains expressive power over a BN in 
which all continuous variables are discretized. As we show in this paper, this assertion is justified theoretically by the 
fact that any Lipschitz mixed probability distribution can be (arbitrarily well) approximated by a ctdBN. For inference, the 
density functions need only be included in the BN as discrete evidence (computed by integrations) over the discretized 
variables and, then, only a classical inference over discrete variables is needed to complete the process. As, in our model, 
the density functions are univariate, integrations can be performed efficiently. So the inference times are very close to those 
of inferences in classical BNs, which makes inference tractable in ctdBNs. The theoretical computational complexity of our 
inference algorithm supports this assertion. In addition, the experiments performed in the paper also highlight this point as 
well as the expressive power of the model.

The paper is organized as follows. In the next section, we recall some related works on CLGs, MTEs, MTBFs and MOPs. 
Then, in Section 3, we present our model, we study theoretically its expressive power, i.e., its capacity to approximate 
mixed probability distributions, and we propose an inference algorithm as well as its computational complexity. Next, the 
efficiency and effectiveness of ctdBN’s inferences are highlighted through a set of experiments. Finally, a conclusion and 
some perspectives are provided in the last section.

2. Related works

In the rest of the paper, capital letters (possibly subscripted) refer to random variables and boldface capital letters to 
sets of variables. To distinguish continuous random variables from discrete ones, we denote by X̊i a continuous variable and 
by Xi a discrete one. Without loss of generality, for any X̊i , variable Xi represents its discretized counterpart. Throughout 
the paper, let XD = {X1, . . . , Xd} and X̊C = { X̊d+1, . . . , X̊n} denote the set of discrete and continuous random variables re-
spectively. We denote by X = XD ∪ X̊C the set of all random variables. In addition, for any set of indices I = {i1, . . . , ik}, XI
denotes the set of random variables {Xi1 , . . . , Xik }. Finally, for any variable X or set of random variables Y or Y̊, let �X (resp. 
�Y or �Y̊) denote the domain of X (resp. Y or Y̊).

As mentioned in the introduction, a Conditional Linear Gaussian (CLG) model represents a mixed probability distribution 
[7]. Like in a BN, in the CLG model, to each discrete variable Xi in XD is assigned its conditional probability table (CPT) 
P (Xi |Pa(Xi)) given its parents (the latter are all discrete). In addition, to each continuous variable X̊i ∈ X̊C is assigned the 
conditional distribution:

f (x̊i |XDi = xDi , X̊Ci = x̊Ci) = N (x̊i |α(xDi) + β(xDi)
T x̊Ci ,σ (xDi)),

where XDi and X̊Ci are the set of discrete and continuous parents of X̊i respectively. α(xDi) and β(xDi ) are the coefficients 
of a linear regression model of X̊i given its continuous parents. These coefficients depend on the values xDi of the discrete 
parents. The product of all the CPTs and the conditional distributions represent the joint mixed distribution over X . Our 
ctdBN model shares some similarities with CLGs: it represents mixed probability distributions using a DAG whose nodes 
represent random variables, the parents of the discrete ones being also necessarily discrete. The main difference between 
CLGs and ctdBNs lies in the conditional density functions assigned to the continuous random variables. Unlike CLGs, in 
ctdBNs, they are not limited to normal distributions and any conditional truncated density function can be used. In this 
sense, ctdBNs are more general than CLGs. The dependences between the continuous variables are also different: in CLGs, 
those are necessarily linear (the coefficients of the mean vector result from a linear regression) whereas, in ctdBNs, linearity 
is not required. Of course, nonlinearity can be approximated by piecewise linear functions and can therefore be taken into 
account in CLGs introducing latent variables and using deterministic relationships, like in [19]. In ctdBNs, this is taken into 
account directly through the relationships between the discretized random variables. There is no need to introduce latent 
variables, which complexifies the learning of the model. Finally, in CLGs, the mean vector of the normal distribution assigned 
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