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We study the complexity of inference with Relational Bayesian Networks as parameterized 
by their probability formulas. We show that without combination functions, inference is
pp-complete, displaying the same complexity as standard Bayesian networks (this is so 
even when the domain is succinctly specified in binary notation). Using only maximization 
as combination function, we obtain inferential complexity that ranges from pp-complete to
pspace-complete to pexp-complete. And by combining mean and threshold combination 
functions, we obtain complexity classes in all levels of the counting hierarchy. We 
also investigate the use of arbitrary combination functions and obtain that inference is
exp-complete even under a seemingly strong restriction. Finally, we examine the query 
complexity of Relational Bayesian Networks (i.e., when the relational model is fixed), and 
we obtain that inference is complete for pp.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks provide an intuitive language for the probabilistic description of concrete domains [22]. Jaeger’s Re-
lational Bayesian Networks, here referred to as rbns, extend Bayesian networks to abstract domains, and allow for the 
description of relational, context-specific, deterministic and temporal knowledge [20,21]. There are many languages that 
also extend Bayesian networks into relational representations [11,12,16,23,24,30]; rbns offer a particularly general and solid 
formalism.

rbns constitute a specification language containing a small number of constructs: relations, probability formulas, com-
bination functions, and equality constraints. Combination functions are a particularly important modeling feature, as they 
provide a way of aggregating information from different elements of the domain.

It should not be surprising that the inferential complexity of Bayesian networks specified by rbns depends on the choice 
of constructs allowed. However, few results have been produced on the relation between the expressivity of such constructs 
and the complexity of inference.

In this paper, we examine the effect of combination functions on the complexity of inferences with (Bayesian networks 
specified by) rbns. We first argue that, without combination functions, rbns simply offer a language that is similar to 
plate models, a well-known formalism to describe models with simple repetitive structure [17,27]. We show that without 

✩ This paper is part of the Virtual special issue on the Eighth International Conference on Probabilistic Graphical Models, edited by Giorgio Corani, 
Alessandro Antonucci, Cassio De Campos.

* Corresponding author.
E-mail address: denis.maua@usp.br (D.D. Mauá).

http://dx.doi.org/10.1016/j.ijar.2017.03.014
0888-613X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2017.03.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:denis.maua@usp.br
http://dx.doi.org/10.1016/j.ijar.2017.03.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2017.03.014&domain=pdf


D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 85 (2017) 178–195 179

Table 1
Summary of complexity of inference parameterized by the combination functions allowed, how domain is specified, the maximum arity of relations, and 
the maximum nesting level of combination expressions.

Combination functions Domain spec. Bounded arity? Bounded nesting? Complexity of inference

none unary yes – pp-complete
none binary yes – pp-complete
max binary yes yes pexp-complete
max unary no yes pexp-complete
max unary yes no pspace-complete
max unary yes yes pp

�p

k -complete
threshold, mean unary yes yes ckp-harda

polynomial unary yes yes exp-complete

a Membership when threshold and mean are used depend on further constrains explained in Section 4.3.

combination functions inference is pp-complete, irrespective of the encoding of the domain; this matches the complexity of 
inference in standard (propositional) Bayesian networks. When we allow combination functions and the associated equality 
constraints into the language, matters complicate considerably. When either the domain is specified in binary or the arity of 
relations is unbounded, inference is pexp-complete even when the only combination function is maximization. If we place 
a bound on arity, and specify the domain in unary notation (or equivalent, as an explicit list of elements), and allow only 
maximization as combination function, then inference is pspace-complete. This is mostly generated by the ability to nest 
an unbounded number of maximization expressions. In fact, by further restricting the number of nesting of combination 
functions, we obtain the same power as a probabilistic Turing machine with access to an oracle in the polynomial hierarchy. 
We then look at a combination of mean and a threshold: the former allows probabilities to be defined as proportions; 
the latter allows the specification of piecewise functions. We argue that threshold and mean combined are as powerful 
as maximization, and thus all previous results hold. And by a suitable constraint on the use of threshold and mean, we 
show that we can obtain complexity in every class of the counting hierarchy. We also look at the complexity of inference 
when the combination function is given as part of the input. The challenge here is to constrain the language so as to obtain 
non-trivial complexity results. We show that requiring polynomial-time combination functions is too weak a condition in 
that it leads to exp-complete inference. On the other hand, requiring polynomially long probability formulas brings inference 
down to pp-completeness. These results are summarized in Table 1.

We also investigate the complexity of inference when the rbn is assumed fixed. This is equivalent to the idea of com-
piling a probabilistic model [6,9]. We show that complexity is either polynomial if probability formulas can be computed in 
polynomial time (which includes the case of no combination expressions) or pp-complete, when the combination functions 
can be computed in polynomial time (which includes the cases of maximization, threshold and mean).

The paper begins with a brief review of rbns (Section 2), and key concepts from complexity theory (Section 3). Our con-
tributions regarding inferential complexity appear in Section 4. The complexity of inference without combination functions 
appear in Section 4.1. Relational Bayesian networks allowing only combination by maximization are analyzed in Section 4.2, 
while networks allowing mean and threshold are analyzed in Section 4.3. General polynomial-time computable combination 
formulas are examined in Section 4.4. Query complexity is discussed in Section 5. We justify our use of decision problems 
(instead of functional problem) and discuss how our results can be adapted to provide completeness for classes in the 
functional counting hierarchy in Section 6. A summary of our contributions and open questions are presented in Section 7.

2. Relational Bayesian networks

2.1. Bayesian networks

A Bayesian network is a compact description of a probabilistic model over a propositional language [7,22]. It consists of 
two parts: an acyclic directed graph G = (V , A) over a finite set of random variables X1, . . . , Xn , and a set of conditional 
probability distributions, one for each variable and each configuration of its parents. The parents of a variable X in V
are denoted by pa(X). In this paper, we consider only 0/1-valued random variables, hence each conditional distribution 
P(X |pa(X)) can be represented as a table.

The semantics of a Bayesian network is obtained by the directed Markov property, which states that every variable 
is conditionally independent of its non-descendants given its parents. For categorical random variables, this assumption 
induces a single joint probability distribution by

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

P(Xi = xi|pa(Xi) = πi) ,

where πi is the vector of values for pa(Xi) induced by assignments {X1 = x1, . . . , Xn = xn}. Bayesian networks can represent 
complex propositional domains, but lack the ability to represent relational knowledge.
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