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a  b  s  t  r  a  c  t

The  major  purpose  of the  study  is to  examine  how  Bayesian  networks  can  be used  to  represent  and  under-
stand potential  ignition  scenarios  in nuclear  waste  decommissioning.  This  is illustrated  using a network
to  represent  a situation  with  stacked  storage  boxes  containing  pyrophoric  material  removed  from  waste
storage  silos.  Corrosion  of  this  material  during  storage  produces  hydrogen  which  is  released  through  a
filter medium  into  the gap  between  the  boxes.  The  probabilistic  relationships  used  to indicate  depen-
dence  between  network  nodes  are  expressed  by conditional  probability  tables  or  C++  coded  equations
that  relate  to  UK  nuclear  industry  corrosion  and  storage  data. The  study  focuses  on  optimal  prediction
of  the  likelihood  of a flammable  hydrogen  atmosphere  arising  in the  gap  between  stacked  boxes  and
the  conditions  necessary  to  exceed  the  lower  flammable  limit.  It is  concluded  that  the approach  offers
a  useful  means  of  easily  determining  the  manner  in which  varying  the  controlling  parameters  affects
the  possibility  of an ignition  event.  The  effect  of data  variation  can be  examined  at  first  hand  using the
supplementary  Bayesian  Network  that  accompanies  the  article.

© 2018  Institution  of Chemical  Engineers.  Published  by  Elsevier  B.V.  All rights  reserved.

1. Introduction

Hydrogen explosion hazards have been a particular concern
relating to waste storage decommissioning and reprocessing oper-
ations which involve Magnox containing waste (Kemsell et al.,
2001). Corrosion of magnesium containing material in the waste
sludge, together with the effects of radiolysis, produces hydrogen
gas which can be held in pockets enveloped in the sludge. If these
pockets are disturbed during processing or storage operations there
is the possibility of developing a flammable atmosphere in the
ullage space above the sludge. A useful discussion and survey of
reactive metal corrosion during nuclear waste packaging has been
provided by Serco Technical Consulting Services in an extensive
report for the Nuclear Decommissioning Authority (NDA, 2018).
Details of the corrosion and storage of Magnox-containing waste
in the UK are also available from a report made available in the
public domain by Nuclear Technologies plc (2018).

There are a variety of possible ignition sources that can develop
during decommissioning, including electrostatic (Ingram et al.,
2014) and mechanical (Jones et al., 2006; Averill et al., 2013; Averill
et al., 2014a; Averill et al., 2014b; Averill et al., 2015a; Averill et al.,
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2015b). Of particular importance are those relating to surface heat-
ing or sparking caused by mechanical stimuli; e.g. sliding contact
or impacts involving metal bodies or a metal body with a con-
crete silo wall. The presence of pyrophoric magnesium-containing
material poses a much enhanced risk of an ignition source occur-
ring. Averill et al. (2015a) have discussed the complex uncertainties
involved in determining the ignition probabilities with pyrophoric
surface substances present and suggested a mechanism for the igni-
tion of hydrogen in air atmospheres by pyrophoric (Mg/O2, Mg/N2
or Mg/iron oxides thermite) reaction. It is also possible, at higher
impact energy, for ignition of hydrogen in air atmospheres to occur
with clean metal on metal impacts (Averill et al., 2014b).

Underpinned by a continuing body of research, the Hydro-
gen Hazards Unit at LSBU, has collaborated with Sellafield Ltd to
produce a comprehensive Technical Guide to hydrogen safety.1

This provides comprehensive information concerning the general
design principles and calculations relating to hydrogen issues that
could arise during nuclear decommissioning in the UK. An impor-
tant component of the Guide is a road map  approach to aid process
engineers in recognizing the likelihood of an ignition event occur-
ring. Following this work, the major purpose of this paper is to
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examine how such road maps can be represented by corresponding
Bayesian networks to better understand potential incident scenar-
ios. Bayesian statistics also offers a means of including any prior
knowledge that is available, particularly the relevant beliefs held
by experts in the field. This is sharply different to classical sta-
tistical methods such as experimental design (Averill et al., 2013;
Averill et al., 2014a) where prior information is discarded. Data that
becomes available is used to continually update a Bayesian model
or network which is initially specified by the prior knowledge.

Bayesian networks effectively mesh together Bayesian theorem
probability calculations and graphical theory. They facilitate an
immediate visualization of all dependent and independent rela-
tionships within the model enabling a wider understanding of the
process. An important aspect of these networks is that the condi-
tional probabilities used to represent the uncertainty of the true
state of a variable can be changed, with the variable being set to
a known value when relevant hard evidence is discovered or the
uncertainty updated following new but still uncertain evidence.
These changes result in an update of the unknown nodes in the net-
work which involves the application of sophisticated algorithms to
carry out complex probability calculus. In this manner, the effect
of changing conditions can be seen propagating throughout even
highly complicated networks. Backwards analysis through the net-
work occurs as well as forward analysis, thus enabling the full effect
of available hard evidence to be easily visualised.

This paper focuses on optimal prediction of the likelihood of
a flammable gas atmosphere arising in the gap between stacked
waste storage boxes which contain pyrophoric material removed
during nuclear decommissioning operations. The model is based
on realistic data related to the corrosion and storage of Magnox-
containing waste in the UK. Although it deals with a specific
application, it is envisaged that a similar approach could easily be
developed for other storage and possible ignition scenarios. A sum-
mary introduction to the relevant aspects of Bayesian inference and
networks is given in the next section.

2. Bayesian conditional probability, likelihood and
networks

In our laboratory ignition experiments (Jones et al., 2006; Averill
et al., 2013; Averill et al., 2014a; Averill et al., 2014b; Averill et al.,
2015a; Averill et al., 2015b), the probability of ignition was simply
determined by the number of times it actually occurred divided by

the total number of similar tests carried out. This is clearly useful
to deal with situations which replicate the experimental conditions
but may  be of limited use in the real world where there is uncer-
tainty and the possibility of enormous environmental variation.
If there are no previous reported instances or experimental test
results of ignitions occurring under the same conditions being con-
sidered, an inclusive approach can be adopted based on Bayesian or
conditional probability: this can formalise a consensus belief under
conditions of uncertainty and utilise all of the information available.

Although Bayes’ theorem has in recent years been much dis-
cussed in the literature, there can be some difficulty in properly
understanding the fundamentally important difference between
likelihood and conditional probability. Bayes’ theorem can be
expressed as a relationship between the prior P(�) and the like-
lihood P (Y |�) (with a data term P(Y) included as a scaling or
normalising parameter) to give an updated posterior P(�|Y).

P(�|Y) = P(Y |�) P(�) /P(Y) (1)

Here, the prior represents a probability distribution (hypothe-
sis) of the possible mean value for the data being considered which
allows for the incorporation of both pre-existing knowledge and
expert belief. It is updated by the likelihood ratio P(Y|�)/P(Y) which
considers any future evidence and determines the probability of
that data occurring for each possible value of � within the distribu-
tion. Multiplying these probabilities by the prior distribution then
allows the posterior to be obtained which represents the altered
and updated probability distribution of the mean value. It should
be recognised that likelihood values differ from conditional proba-
bility, in that they are not constrained to be mutually exclusive and
exhaustive with a total probability value of unity: this makes it nec-
essary for likelihood ratios to be used in the updating process rather
than individual likelihoods. The application of likelihood ratios can
be illustrated using a simple example involving ignition laboratory
tests results. Fig. 1 shows the likelihoods (determined from a bino-
mial distribution) for a series of 10, 20 and 30 tests in which there
were 4 and 8 and 12 positive ignition results. The plots are scaled
so that the best supported ignition probability of 0.4 for each set
of tests corresponds in each case to a likelihood of 1. Clearly the
increase in number of tests has narrowed down the likely range of
the ignition probability: the likelihood of the ignition probability
being 0.6 as apposed to 0.4, for example, is seen from the Plots as
greatly decreasing with increase in the number of tests involved.
This observation is formalised by comparing the likelihoods with

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 tests with 4 ignitions
20 tests with 8 ignitions

Fig. 1. Likelihood function for a series of ignition tests.
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