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Failures of urban buried gas pipelines have caused significant fire and explosion accidents

with tremendous losses. This work presents an advanced two-step approach to analyze

failure probabilities of the urban buried gas pipeline. First, a logical failure model is devel-

oped  with the operational, material and environmental parameters contributing to the

failure (Fault Tree Analysis). Second, the logical model is transformed into a network model

(Bayesian Network). This novel approach can better reveal the relationships among failure

causal factors and can also update the failure probabilities as operational and environmen-

tal  conditions evolve. The Bayesian network failure model is subsequently applied to a case

study. The results indicate that this approach is feasible and reasonable which can assist in

identifying safety critical factors. Improving reliability of these safety critical factors can be

of  great help in enhancing the safety of urban buried gas pipelines.

©  2017 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

As a major source of fuel consumption, gas is generally transported

to the users through pipelines (Shahriar et al., 2012). The number

of buried gas pipelines is growing rapidly in the world due to their

advantages of mass transportation, high security and strong continu-

ity. However, with the running time increasing, the wear and corrosion

phenomenon of buried gas pipelines is very serious even though those

buried pipelines were coated under cathodic protection (Wang et al.

2014, 2016). As the transported gas is usually combustible, explosive

and diffusible, there have been vast amounts of urban buried gas

pipeline leakage accidents causing considerable death toll, capital loss

and environment damage (Dong and Yu, 2005). Table 1 listed some

typical urban buried gas pipeline accidents in recent years.

Risk analysis is vital in order to improve the reliability of urban

buried gas pipeline and prevent potential accidents. Although acci-

dents cannot be fully avoided, the overall risk of urban buried gas
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pipeline can be reduced to an acceptable level by performing reason-

able risk analysis and taking some effective risk prevention measures

(Shahriar et al., 2012). While the consequence of pipeline failure can

be modeled by using computational fluid dynamics, the probability

of failure might be obtained through fault tree analysis or Bayesian

approach (Joshi et al., 2016). Failure probability analysis is the key role

of risk analysis and several studies have been carried out to analyze

the failure probability of buried gas pipeline. Carr computed the fail-

ure probability of pipeline using First Order/Second Order Reliability

Method (FORM/SORM) and Monte Carlo Simulation (MCS) (Carr, 2014).

The operation speed of FORM/SORM is very fast with a low accuracy

while MCS is an accurate method with a very long running time. Dong

and Yu (2005) employed a fuzzy fault tree model to estimate the fail-

ure probability of oil and gas pipelines. In this study, expert elicitation

and fuzzy set theories were combined to calculate the probabilities,

which solved the problem of ambiguity and imprecision of basic events.

Cagno et al. (2000) proposed a robust Bayesian approach to assess the
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Table 1 – Typical buried gas pipeline accidents in recent years.

Time Location Reason Consequence

April 22, 1992 Mexico city Pipe network leak explosion More than 500 deaths and 7000
injuries

January 3, 1995 Tsinan, China The leaked gas was filled with cable
gutter and detonated

17  deaths, more than 100 injuries and
loss of ¥4.29 million

December 11, 1999 Sian, China Gas explosion caused by construction
damage

More  than 10 injuries, 2 of them were
seriously injured

August 2, 2004 Asuncion, Paraguay Fire caused by gas pipeline explosion 250 deaths
November 18, 2007 Kingdom of Saudi Arabia Fire caused by gas leakage 28 injuries, and 12 were missing
June 11, 2013 Soochow, China Gas leak explosion 11 deaths, 9 injuries, and 400 m2 of

three-story office building collapsed
August 1, 2014 Kaohsiung city Gas leak explosion 32 deaths, 321 injuries
April 17, 2015 California, US Gas explosion caused by construction

damage
More  than 14 injuries, 4 of them were
seriously injured

July 20, 2016 Enshi, China Gas explosion caused by geological
hazard

2  deaths, 7 injuries, and 5 houses
damaged

failure probability of low-pressure pipelines used in metropolitan gas

networks. In their work, the prior probabilities of factors leading to gas

pipeline failure were calculated by AHP and the integration of historical

data and expert opinions was implemented by Bayesian inference to

solve the problem of incomplete historical data. Han and Weng (2011)

employed a modified empirical formula to derive the failure probability

of urban natural gas pipeline network, which depended on some failure

assumptions caused by risk factors. Guo et al. (2016) proposed a fuzzy

Petri net approach for oil and gas pipeline, in which AHP model and EM

model was combined to determine the weights of risk factors. The ini-

tial degrees of the risk factors were calculated by the cloud model and

some parameters were optimized by fuzzy reasoning. This approach

reflected the fuzziness and randomness of risk factors, reducing the

impact of subjective and objective factors.

Most of the previous studies have some limitations. For example,

they cannot handle data scarcity and relation uncertainties (Zarei et al.,

2016), and cannot update the posterior probabilities of events (Duan

and Zhou, 2012). In this paper, in order to overcome these limitations, a

comprehensive analysis approach of failure probability was presented

based on fault tree analysis and Bayesian networks (Rathnayaka et al.,

2011a, 2011b). The fault tree model can reveal various risk factors on

the failure of urban buried gas pipeline and their relations compre-

hensively and vividly. However, the calculation of failure probability

is complex when the system of fault tree is large, and the fault tree

model cannot describe multi-state variables and uncertain causal rela-

tionships (Khakzad et al., 2011, 2013a, 2013b). Bayesian network has an

excellent ability in dealing with multi-state variables, uncertain causal

relationships, updating probabilities, performing bidirectional reason-

ing and handling data scarcity (Dongiovanni and Iesmantas, 2016; Wu

et al., 2015; Li et al., 2016). The combination of fault tree and Bayesian

network in this work reduces the complexity of failure probability

model and subjective factors in analysis and hence accurate results

can be derived.

2.  Methodology

2.1.  Bayesian  network  model  based  on  fault  tree

Bayesian network, known as a graphical model of probabil-
ity theory, is a directed acyclic graph comprising of many
nodes representing stochastic variables and directed arcs
symbolizing probabilistic conditional dependences between
them (Khakzad et al., 2011; Wu et al., 2015; Tien and Der
Kiureghian, 2016). Bayesian network is one of the most effec-
tive theoretical models in the field of reasoning based on
uncertain knowledge, structure and parameter learning and
updating probabilities given new observations, which can
derive more  accurate system failure probabilities and the pos-
terior probabilities of root nodes (Hu et al., 2016). However, the

construction of Bayesian network is the “bottleneck” for the
application of it. Currently mapping fault trees to Bayesian
networks is an efficient approach to solve this “bottleneck”
problem (Duan and Zhou, 2012).

Fault tree is a deductive methodology describing the con-
tributing causes of an undesired event. The fault tree starts
with an undesired event (top event) and is conducted down-
ward, dissecting the system for further details until basic
events are known (Khakzad et al., 2011; Askarian et al., 2016).
Since complete data of accidents is hard to obtain, the prior
probabilities of basic events are usually determined by the
data of historical accidents statistics, literature and expert
opinions (Li et al., 2016; Weber et al., 2012). The rules of
converting fault tree to Bayesian network is recapitulated as
follows (Khakzad et al., 2013a; Bobbio et al., 2001; Lampis and
Andrews, 2009):

(1) As the structure of Bayesian network corresponds to that
of fault tree, basic events, intermediate events, and the
top event in the fault tree are represented as root nodes,
intermediate nodes, and the leaf node in the correspond-
ing Bayesian network, respectively. For the basic event
representing the same component, only one root node in
Bayesian network is created.

(2) The nodes in Bayesian network are connected in the same
way as the corresponding events in the fault tree such that
the input events of gate in the fault tree are the child nodes
of the Bayesian network while the output events are the
parent nodes.

(3) The prior probabilities of root nodes in Bayesian network
are assigned by the occurrence probabilities of the corre-
sponding basic events in the fault tree.

(4) The conditional probability tables (CPTs) of intermediate
nodes and the leaf node are assigned according to the
type of gate. Fig. 1 shows the translation of an OR and
an AND gate into the corresponding constructions of the
Bayesian network and the corresponding CPTs are shown
in Tables 2 and 3 (Dongiovanni and Iesmantas, 2016).

Table 2 – Conditional probability table of M1.

X 1 0 1
X 2 0 1 0 1
M 1 0 1 0 0 0

1 0 1 1 1
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