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Learning Bayesian networks with bounded tree-width has attracted much attention 
recently, because low tree-width allows exact inference to be performed efficiently. Some 
existing methods [24,29] tackle the problem by using k-trees to learn the optimal Bayesian 
network with tree-width up to k. Finding the best k-tree, however, is computationally 
intractable. In this paper, we propose a sampling method to efficiently find representative 
k-trees by introducing an informative score function to characterize the quality of a 
k-tree. To further improve the quality of the k-trees, we propose a probabilistic hill 
climbing approach that locally refines the sampled k-trees. The proposed algorithm can 
efficiently learn a quality Bayesian network with tree-width at most k. Experimental results 
demonstrate that our approach is more computationally efficient than the exact methods 
with comparable accuracy, and outperforms most existing approximate methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks (BNs) use a directed acyclic graph (DAG) to compactly represent the joint probability distribution for 
multiple variables. The DAG encodes conditional independencies which reduces the number of parameters. Learning BNs 
from data has been widely studied for decades. In this paper we present our approach of score-based BN structure learning 
with some special constraint.

The inference problems in BNs, such as querying the probability of some value of a variable conditioned on a configura-
tion of some other variables (belief updating), or finding a configuration of the variables that maximizes the joint probability 
(MAP inference), are NP-hard to compute exactly [13] or even approximately [15,30]. Existing exact algorithms have worst-
case time complexity exponential in the tree-width of the graph [16,20,23,26]. Therefore, for any application that requires 
fast inferences, it is important to learn networks with small tree-width. Learning a BN with bounded tree-width has received 
growing attention recently. Besides guaranteed inference complexity, by imposing a hard constraint on the tree-width of the 
structure, selecting an over-complicated structure is prevented, thus the chance of over-fitting is reduced. Some empirical 
results [18] demonstrate that bounding the tree-width of a BN achieves better generalization performance.

Several algorithms have been proposed to learn BNs with bounded tree-width. Elidan and Gould [19] designed an ap-
proximate algorithm by combining several heuristics to compute the tree-width and to learn the structure of BNs. Korhonen 
and Parviainen [24] proposed a dynamic programming based algorithm for learning n-node BNs of tree-width at most k
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(which we denote as K&P algorithm in this paper). Their algorithm guarantees to find the optimal structure over n nodes 
maximizing a given score function subject to the tree-width constraint with complexity O (3nnk+O (1)). In practice, it is quite 
slow for networks with more than 15 nodes, or tree-width more than 3. Parviainen et al. [31] developed an integer pro-
gramming approach to solve the problem. It iteratively creates a cutting plane on the current solution to avoid exponentially 
many constraints. Berg et al. [6] transferred the problem into a weighted maximum satisfiability problem and solved it by 
weighted MAX-SAT solvers. However, all the exact algorithms work only with small networks and small tree-widths. We 
introduced an exact algorithm based on mixed integer linear programming (MILP) [29] and approximate methods based 
on k-tree sampling [29,27] to address this problem. In our latest work [28], we further improved the sampling method 
using the A* search algorithm. Methods have also been proposed to tackle the problem of learning undirected models with 
bounded tree-width [2,10,35].

In this work, we present a novel method of score-based BN structure learning with bounded tree-width. We design an 
approximate approach based on sampling k-trees, which are the maximal graphs of tree-width k. The sampling method is 
based on a fast bijection between k-trees and Dandelion codes [9]. We design a sampling scheme, called distance preferable 
sampling (DPS), in order to effectively cover the space of k-trees using limited samples, in which we give a larger probability 
for a sample in the unexplored area of the space, based on the existing samples. Smart rules to explore the sample space 
are essential, because we can only compute a few best structures respecting sampled k-trees in a reasonable amount of 
time. To evaluate the sampled k-trees, we design an informative score (I-score) function to measure the quality of k-trees 
based on independence tests and BDeu scores. Different from the method proposed in [29], this work focuses on identifying 
high quality k-trees, instead of uniformly sampling. For each sampled k-tree (represented by a Dandelion code), we first 
refine it by employing a hill climbing algorithm (HC) to locally identify a code with the largest I-score. One shortcoming of 
the HC method is that it ends up with a local optimum. To alleviate this issue, we introduce a probabilistic version of the 
hill climbing method (PHC) to obtain a k-tree of high quality. Once a k-tree is found, both exact [24] and approximate [29]
methods are implemented to find the BN as a subgraph of the k-tree.

This paper is structured as follows. We first introduce some definitions and notations for BNs and tree-width in Section 2. 
Then we discuss the proposed sampling method for learning BNs with bounded tree-width in Section 3. Experimental results 
are given in Section 4. Finally we conclude the paper in Section 5.

2. Preliminaries

2.1. Learning Bayesian networks

A Bayesian network uses a directed acyclic graph (DAG) to represent a set of random variables X = {Xi}n
i=1 and their 

conditional (in)dependencies. Arcs of the DAG encode parent–child relations. Denote X pai as the parent set of variable Xi . 
Conditional probability tables p(xi |xpai ) are given accordingly, where xi and xpai are instantiations of Xi and Xpai . We 
consider categorical variables in this work.

Given a fixed structure G and a complete data set D = {x( j)}M
j=1 of points assumed sampled independently from a dis-

tribution P on X , the numerical parameters θ of a BN with structure G can be efficiently obtained by maximum likelihood 
estimation (MLE) by finding θ that maximizes the data log-likelihood according to the model:

L(G, θ) =
M∑

j=1

log P G,θ (x( j)) . (1)

The structure learning task of BNs is to identify the “best” DAG from data. In this paper we consider the score-based BN 
structure learning problem, in which a score s(G) is assigned to each DAG G . The commonly used score functions (such as 
BIC [33] and BDeu [8,14,22]) are decomposable, i.e., the overall score can be written as the sum of local score functions,

s(G) =
n∑

i=1

si(Xpai ) . (2)

For each variable, its score is only related to its parent set. We assume that local scores have been computed in advance 
and can be retrieved in constant time.

Most score functions penalize model complexity, because increasing the number of parents of a variable never decreases 
data likelihood, which leads to overfitting and poor generalization. A typical example is the BIC score,

si(xpai ) = Li,pai − ti(xpai ) · w , (3)

where the first term is log-likelihood and the second term is a penalty term to avoid overfitting. ti(pai) is the number of free 
parameters with respect to the configuration of {xi, xpai }, and w = 1

2 log M , where M is the number of data samples. Such 
penalty term generally leads to structures of small in-degree, but even small in-degree graphs can have large tree-width, 
which is a problem for subsequent probabilistic inferences with the model. An example is the directed square grid, which 
has tree-width linear on the number of nodes in the diagonal of the grid, but maximum in-degree fixed in two. A more 
effective way to constrain the sparsity of the structure is to use a bound for the tree-width, a commonly used measure of 
the complexity of a graph.
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