Safety Science 102 (2018) 211-225

Contents lists available at ScienceDirect

Safety Science

journal homepage: www.elsevier.com/locate/safety =

Addressing the epistemic uncertainty in maritime accidents modelling using
Bayesian network with interval probabilities

@ CrossMark

Guizhen Zhang®, Vinh V. Thai""*

2 DHI-NTU, Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Clean Tech Loop, Singapore
637141, Singapore
® School of Business IT & Logistics, RMIT University, Melbourne, VIC 3000, Australia

ARTICLE INFO ABSTRACT

Keywords:

Interval probabilities
Bayesian network
Maritime accidents
Experts’ elicitation
Epistemic uncertainty

Bayesian Network (BN) is often criticized for demanding a large number of crisp/exact/precise conditional probability
numbers which, due to the lack of statistics, have to be obtained through experts’ judgment. These exact probability
numbers provided by the experts often carry a high level of epistemic uncertainty due to the incompleteness of human
knowledge, not to mention the hardness in obtaining them in the first place. The existence of uncertainty in risk
modelling was well recognized but seldom discussed. This paper explores the extension of BN with interval prob-
abilities to the modelling of maritime accidents, which allows for the quantification of the epistemic uncertainty. Ship
collision is chosen for case study for the strategic importance of navigational safety. The user friendly linguistic terms
defined with interval scales were used for elicitation of interval conditional probabilities from industry experts.
Inferences were made directly with the interval probabilities with the GL2U algorithm. Meanwhile, the interval
probabilities were converted into point probabilities and computed with the traditional BN method for comparison,
which were all shown to be within the ranges of the calculated posterior intervals probability. Results with inputs from
different experts reveal discrepancies, which in turn verify the existence of uncertainty in risk modelling. A discussion
was also provided on how the uncertainty in risk assessment propagates to the decision making process and influences
the ranking of potential risk control options.

1. Introduction Studies (HAZOP), Failure Mode and Effects Analysis (FMEA), Event Tree

Analysis (ETA), Fault Tree Analysis (FTA) and Bayesian Belief Network (BN).

1.1. Maritime accidents and BN

Maritime accidents have continued to occur, which threaten the safety of
seafarers at sea, the economic performance of shipping companies and the
environment. Therefore, understanding why and how accidents happen is of
great importance for future safety management. Since accidents cannot be
completely avoided, the reasonable goal is to control the accident risk to a
desired level. Risk assessment is essential for this purpose. By performing risk
analysis, we can evaluate the safety level of the current system as well as
identifying the most critical issues. Some risk assessment methods also enable
the evaluation of risk control options and thus ascertaining the most cost-
effective way for reducing the risk level. Many risk analysis methods have
been developed in the past few years, including Hazard and Operability

Each of these risk analysis tools has its unique characteristics and fits different
purposes.

BN is becoming an increasingly popular methodology for risk ana-
lysis of the maritime transportation system in recent years due to its
capability to model causal interdependence, to incorporate of experts’
knowledge when statistical data does not exist, to make dynamic up-
dates when new observation is made, and to include human and or-
ganizational factors. Helle et al. (2011), Lehikoinen et al. (2015),
Montewka et al. (2014), Banda et al. (2016) and Zhang et al. (2013) are
a few examples of BN applications in the maritime risk analysis field. A
more detailed review of the literature on maritime accidents risk pre-
diction based on Bayesian Network can be referred to Goerlandt and
Montewka (2015b) as well as Zhang and Thai (2016). BN was also
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Table 1
Comparison of aleatory uncertainty and epistemic uncertainty.
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Comparison Aleatory uncertainty

Epistemic uncertainty

Source of the uncertainty
Existence

Variability of the underlying stochastic process
Quantities

System

Not reducible

Probability number/distribution

Associated with
Reducible
Modelling by
Equivalent terms
variability, (basic) randomness, and type-A uncertainty

Variability, natural uncertainty, objective uncertainty, inherent

Incomplete knowledge of the system

Model and parameter

Analyst

Reducible

Alternative probability number/distribution

Subjective uncertainty, lack-of-knowledge or limited-knowledge uncertainty,
ignorance, specification error, prediction error, and type-B uncertainty

recommended for risk assessment (Step 3 of the Formal Safety Assess-
ment, FSA) to International Maritime Organization (IMO) (IMO, 2006).
The application of BN includes three steps, i.e. BN structure develop-
ment, parameterization, and inferences. Both the BN structure and
parameters could be built manually, automatically or a combination of
both (Neil et al., 2000; Kjréulff and Madsen, 2013; Neil et al., 2000).

1.2. Uncertainty and BN modelling

The consideration of uncertainties is crucial for obtaining reliable results
in risk analysis (Merz and Thieken, 2005). By sources, uncertainties could
be broadly separated into two class: aleatory and epistemic uncertainty, the
comparison of which could be found in Table 1.

Liu et al. (2003) reviewed some of the most important uncertainty
reasoning approaches, including the Bayesian theory of probability,
Dempster-Shafer theory of evidence, and fuzzy set theory. Each of these
approaches views and handles uncertainties from different perspec-
tives. Bayesian Theory has many good features such as strong theore-
tical root, less computational complexity compared with other ap-
proaches. It models aleatory uncertainty through probability but could
not include epistemic uncertainty since each entity must be assigned
with exact probability numbers.

Due to the lack of available statistical data, experts’ opinion is an im-
portant source for the probability specification or parameterization in BN
modelling, especially for applications to the maritime risk assessments. This,
however, poses huge challenges for the reliability of the model as well as
the involved domain experts. First, for probability elicitation, the experts are
often asked about the conditional dependence between the model elements
on top of their own expertise. Moreover, the requirement to elicit a large
number of probability numbers adds to the workload of the experts. From
the viewpoint of modelling, the involvement of experts will lead to epis-
temic uncertainty, due to the lack of knowledge about the system (Liu et al.,
2003; Merrick et al., 2005; Fallet et al., 2011), which can sometimes be
referred to as quantities which have fix values, but their exact value are
unknown (Swiler et al., 2009).

The lack of systematic consideration of uncertainty in the applications of
maritime transportation risk analysis was identified through a detailed re-
view in Goerlandt and Montewka (2015b), even though the existence of
uncertainties are recognized and accepted. One exception was Merrick et al.
(2005) which used Bayesian approach to estimate the impacts of parameter
uncertainties in the traffic simulation model (not the risk analysis model)
for evaluating the ferry expansion alternatives. In the last few years, there
have been more studies with focus on uncertainties in the maritime risk
models. For example, Sormunen et al. (2014) showed through an extensive
study that the uncertainties in accident and risk models can be significant.
Goerlandt and Montewka (2015a) went one step further by introducing a
framework where uncertainties are qualitatively assessed. However, so far,
there are no studies on maritime risk analysis which quantitatively address
the epistemic uncertainties. The objective of this paper is to provide a
method to model the epistemic uncertainties related with the probability
parameters in Bayesian Network models for maritime risk analysis.

To achieve the objective, this paper seeks to extend BN by including
interval probabilities. Interval probability expresses imprecision in a
more straightforward way. Fallet et al. (2011) concluded that the
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interval probability method best represents the experts’ knowledge due
to more appropriate semantics as compared to hard evidence, soft
evidence, and total ignorance. In applications, obtaining interval
probability parameters are much easier than getting point probabilities,
especially when there is only little, incomplete or conflicting informa-
tion available to assist experts’ judgment (Guo and Tanaka, 2010). In
other cases, when multiple experts are involved, each expert may in-
dicate their own belief and if no consensus could be reached, the result
are interval probabilities (Cozman, 2000). Considering these facts, the
application of interval probability (with an upper bound and lower
bound) in BN could bring more application value.

1.3. Organization of this paper

The rest of this paper is organized as follows. Section 2 defines in-
terval probability, discusses its properties and summarizes the updating
algorithm for BN with interval probabilities. Section 3 presents the
application of BN with interval probabilities to ship collision causation
probability modelling. The detailed elicitation process is also discussed
in this section. Section 4 shows the inference result with the interval
probabilities. An example of the influence on the evaluation of risk
control options with interval probabilities is provided as well. Finally,
Section 5 summarizes the paper.

2. Methodology

This paper extends the traditional BN to include interval probability
parameters for maritime risk modelling. Inferences are made directly with
interval parameters. The following subsections present the definition of
credal network, interval probability and the relative properties.

2.1. Credal network and BN with interval probability parameters

BN with interval probabilities is a special type of credal network,
which extends BN to deal with imprecision and uncertainty (Corani
et al., 2012). A credal network over a set of random variables X = (X;,
..., X1 I8 <G, {Py, ... ,P,}>, where G is a directed acyclic graph whose
nodes have one-to-one correspondence to the elements in X, and <G, P;>
is a BN over X for each j = 1, ... ,m (Antonucci, 2008; Antonucci and
Zaffalon, 2008). This definition indicates that a credal network could be
regarded as a set of BNs, as illustrated in Fig. 1.

Fig. la is an example of the traditional BN where all the prob-
abilities are exact numbers. Fig. 1b is a credal network with the same
structure. The probabilities in the credal network are imprecise, being
an interval or comparisons of the probabilities, which enables the re-
presentation of classificatory and comparative probability judgements
(Piatti et al., 2010). For example, for node A, the judgement 1 < P(a)/
P(—a) < 3 means that the chance of A = a is one to three times higher
than the chance A = —a. For node B, the probability of P(b|a) could be
any value between 0.2 and 0.3. The BN in Fig. 1a is just one among
many others that satisfy the probability conditions of the credal net-
work in Fig. 1b. The inference with a credal network is the same with
inferences with its vertices (Antonucci, 2008). However, the number of
vertices is exponential to the input size except for the case of binary
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