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a b s t r a c t 

We propose a novel method to find Nash equilibria in games with binary decision variables by includ- 

ing compensation payments and incentive-compatibility constraints from non-cooperative game theory 

directly into an optimization framework in lieu of using first-order conditions of a linearization, or re- 

laxation of integrality conditions. The reformulation offers a new approach to obtain and interpret dual 

variables to binary constraints using the benefit or loss from deviation rather than marginal relaxations. 

The method endogenizes the trade-off between overall (societal) efficiency and compensation payments 

necessary to align incentives of individual players. We provide existence results and conditions under 

which this problem can be solved as a mixed-binary linear program. 

We apply the solution approach to a stylized nodal power-market equilibrium problem with binary 

on-off decisions. This illustrative example shows that our approach yields an exact solution to the binary 

Nash game with compensation. We compare different implementations of actual market rules within 

our model, in particular constraints ensuring non-negative profits (no-loss rule) and restrictions on the 

compensation payments to non-dispatched generators. We discuss the resulting equilibria in terms of 

overall welfare, efficiency, and allocational equity. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

There are many real-world settings where several players 

interact in a non-cooperative game with binary decisions, such 

as electricity markets (on-off decision for a power plant), trans- 

portation and facility location models ( Caunhye, Nie, & Pokharel, 

2012 ), engineering ( Rao, 1996 ), as well as agriculture and land-use 

planning ( Tóth, Haight, & Rogers, 2011 ). Modeling Nash equilibria 

between players which face both binary and continuous decisions 

is a challenging problem ( Scarf, 1990 ). Economists and game the- 

orists usually apply brute-force methods by exploring all possible 

combinations and check every solution for deviation incentives 

of each player. When market-clearing prices to support a pure- 

strategy Nash equilibrium in the Walrasian sense do not exist, 

economists suggest to use multi-part pricing ( Hotelling, 1938 ) 

or deviate from marginal-cost pricing to a “second-best” market 

outcome, such that no player should lose money from participat- 
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ing ( Baumol & Bradford, 1970 ). However, a canonical approach 

to find pure-strategy Nash equilibria in binary games does not 

exist. 

In many large-scale practical applications, exploring the entire 

solution space is not realistically possible. A common approach in 

such cases is to linearize the binary decisions; the Nash equilib- 

rium can then be computed by solving the system of first-order 

optimality conditions, a.k.a. equilibrium modeling using mixed 

complementarity problems or variational inequalities, if certain 

assumptions on convexity of the linearized problem hold. Recent 

work seeks a trade-off between relaxation of the complementarity 

(slackness) conditions or the integrality of discrete constraints to 

obtain stationary points that are presumed to be equilibria of the 

original problem ( Fuller & Celebi, 2016; Gabriel, Conejo, Ruiz, & 

Siddiqui, 2013; Gabriel, Siddiqui, Conejo, & Ruiz, 2012 ). 

In this work, we focus on applications where a relaxation 

of optimality conditions or continuous relaxation of the binary 

decision variable (“linearization”) is either not practical or yields 

incorrect results. Instead, we derive first-order optimality con- 

ditions of the continuous variables for both states of each binary 

variable and include those in an overall equilibrium problem 

simultaneously. Our method then selects the state of the binary 
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variable and corresponding continuous variable which provides 

the best response for each individual player. 

Due to the nature of a binary game, there are many instances 

where no set of strategies and no price vector exists that supports 

a Nash equilibrium in pure strategies; i.e., there is no outcome 

where the pay-offs to each stakeholder are such that no player 

has a profitable deviation. This is due to the non-convexity intro- 

duced by the binary decision variables and indivisibilities ( O’Neill, 

Sotkiewicz, Hobbs, Rothkopf, & Stewart Jr, 2005 ). We introduce the 

notion of a “quasi-equilibrium” to describe situations where no 

equilibrium exists, but where a market operator or regulator can 

assign compensation payments in order to obtain an incentive- 

compatible outcome. These payments align the incentives of 

individual players with the objectives of the overall system, such 

as cost minimization or welfare maximization. A regulator may 

also choose to intervene when an equilibrium exists but its out- 

come is inferior to the solution that a benevolent planner might 

achieve. That is, the market operator may seek to minimize the 

deviation from the system optimum (i.e., all decisions by one 

planner) caused by the non-cooperative game among a number of 

decision makers, each seeking to optimize competing objectives. 

Our solution approach allows to endogenously consider the trade- 

off between regulatory intervention to improve market efficiency, 

and the distortions caused by these interventions. 

Electricity markets are the real-world application of binary 

games which have received the most attention in the mathe- 

matical optimization literature ( Bjørndal & Jörnsten, 2008; Hu & 

Ralph, 2007; Liu & Hobbs, 2013; Liu & Ferris, 2013; O’Neill, Krall, 

Hedman, & Oren, 2013; O’Neill et al., 2005; Philpott, Ferris, & Oren, 

2013; Philpott & Schultz, 2006; Wogrin, Hobbs, Ralph, Centeno, 

& Barquín, 2013 ). A challenging problem arises from the on-off

decision of power plants, which usually incur substantial start-up 

or shut-down costs and, if operational, face minimum-generation 

constraints. Because power markets are usually based on marginal- 

cost, short-term pricing, the commitment costs (i.e., start-up costs) 

are not necessarily covered by resulting market prices. 

As a consequence, many electricity systems have rules that 

generators must be “made whole” or have to be “in the money”; 

i.e., they receive “uplift payments” to make sure that they do not 

lose money from participating in the market. This is commonly 

referred to as a “no-loss rule”. However, this may not be required 

from a game-theoretic point of view, and thereby lead to higher- 

than-necessary compensation payments. At the same time, there 

might exist regulations that only power plants that are actually 

generating electricity can receive compensation – the rationale be- 

ing that it may create perverse incentives for market participants 

to be paid to not do something. We will discuss and illustrate in 

a numerical example how such market rules can actually overly 

restrict operational efficiency and thereby reduce welfare. 

The outline of this paper is as follows: in the next section, 

we summarize current approaches to solve binary Nash games 

and place our contribution in the context of methods applied to 

solve such problems in the power sector. In Section 3 , we propose 

an exact solution method to solve binary equilibrium problems. 

The obtained multi-objective program explicitly incorporates the 

trade-off between overall efficiency and compensation payments 

in cases where no equilibrium exists. Section 4 applies our method 

to a power market example from the literature to illustrate its 

advantages and flexibility to incorporate distinct market rules 

regarding uplift payments. Section 5 concludes with a discussion 

on methods, other possible applications, and future work. 1 

1 The Appendix provides computational results for a numerical test case using 

a larger data set than the stylized example in Section 4 . The GAMS codes for 

the stylized example, the numerical test case, as well as an additional example 

for a resource market application with multiple binary investment decisions in 

2. Current approaches to solve binary games 

In this section, we motivate our method by describing how cur- 

rent solution methods for binary games obtain equilibria, and we 

identify where our formulation can improve this process. While 

there exist brute-force methods ( Audet, Belhaïza, & Hansen, 2006; 

Avis, Rosenberg, Savani, & Von Stengel, 2010; Von Stengel, 2002 ) 

that solve for an equilibrium considering all possible combinations 

of the binary variables and check ex-post for deviation incentives, 

we want to concentrate on mathematical programming techniques 

for obtaining equilibria. For large-scale applications such as those 

considered in this work, computational efficiency proves a hurdle 

in these brute-force methods. Solving a large number of equilib- 

rium problems is not very elegant and suffers from a curse of 

dimensionality, because the number of equilibrium problems to be 

solved is 2 k , where k is the number of binary variables. Therefore, 

mathematicians and Operations Researchers are constantly looking 

for ways to apply advances in Variational Inequalities and Integer 

Programming to develop faster methods to solve such problems. 

2.1. Optimization and equilibrium modeling 

Game theory and equilibrium problems have been an integral 

part of the history of mathematical programming. First-order 

optimality (Karush–Kuhn–Tucker, KKT) conditions, derived from 

each individual player’s optimization problem, can be solved 

simultaneously by stacking them to form an equilibrium problem. 

Interpretations from dual variables to constraints in a game theory 

analysis provide essential information in equilibrium problems and 

are often interpreted as prices or marginal benefits for individual 

players ( Facchinei & Pang, 2003; Ferris & Pang, 1997; Murphy, 

Sherali, & Soyster, 1982 ). 

However, this relationship between optimality conditions and 

equilibrium problems fails once a game includes binary decision 

variables. The reason is that optimality conditions cannot be 

directly derived for binary optimization problems. Thus, applied 

researchers aim to solve such optimization problems in other ways. 

A method based on a trade-off between relaxing the integrality 

and the complementarity constraints is developed by Gabriel et al. 

(2013) . While relaxing integrality has been employed as a way to 

solve integer programs, relaxing complementarity – essentially the 

optimality conditions – was the novel idea of their contribution. 

A similar problem is tackled by Fuller and Celebi (2016) ; they 

propose a minimum disequilibrium model, defining disequilibrium 

as the difference between the pay-off in the socially optimal 

outcome and the individually optimal decision, summed over all 

players. That is, they seek to minimize the aggregated opportunity 

costs for all market participants from following the instructions 

of a social planner. The authors relate the MD model both to the 

results obtained by a social planner and to the model proposed by 

Gabriel et al. (2013) . 

One alternative recent method to tackle binary equilibrium 

problems focuses on solving integral Nash–Cournot games ( Todd, 

2014 ) and provides an efficient algorithm to obtain equilibria. 

This method works very well for a specific integer game with no 

constraints, but the algorithm is not applicable to the broad class 

of binary-constrained games considered in this paper. 

2.2. Dual variables in binary programs 

As mentioned above, dual variables in constrained convex 

optimization contain useful information both for computational 

production and pipeline capacity for several player are available for download at 

https://github.com/danielhuppmann/binary _ equilibrium under a Creative Commons 

Attribution 4.0 International License . 
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