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a b s t r a c t

Philip Reny’s approach to gameswith discontinuous utility functions canwork outside its original context.
The existence of Nash equilibrium and the possibility to approach the equilibrium setwith a finite number
of individual improvements are established, under conditions weaker than the better reply security, for
three classes of strategic games: potential games, games with strategic complements, and aggregative
games with appropriate monotonicity conditions.
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1. Introduction

Reny (1999) made a significant step in the development of
sufficient conditions for Nash equilibrium existence in games with
discontinuous utility functions. A feature common to games con-
sidered by Reny andmost of his followers, see, e.g., McLennan et al.
(2011) or Prokopovych (2013), is that the strategy sets are convex
and each utility function is quasiconcave in own argument. Bich
(2009) relaxes the quasiconcavity, but not at all radically.

In this paper, we extend Reny’s approach to three different
classes of strategic games: potential games; games with strategic
complements; aggregative games with appropriate monotonicity
conditions. Besides, our attention is switched from the mere ex-
istence of a Nash equilibrium to the possibility to approach the
equilibrium set with a finite ‘‘individual improvement path’’. What
unites the three classes is that the existence of a Nash equilibrium
in none of them has anything to do with convexity. Moreover, it is
much easier to prove and understand in the case of a finite game; in
an infinite game, there may be no equilibrium at all, to say nothing
of its approachability, without some topological assumptions. And
for each class of games, we obtain a set of such assumptions that
could not be derived from the previous literature.

Following Reny (2016), we consider games with purely ordinal
preferences, i.e., where utility functions take values from arbitrary
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chains rather than the real line. Inevitably, we only consider pure
strategies. Our (i.e., essentially, Reny’s) topological assumptions
do not ensure the existence of the best responses; therefore, the
standard fixed point theorems cannot be applied directly. Instead,
we consider finite subgames, where Nash equilibria not only exist,
but can be reached, starting from an arbitrary strategy profile, with
a finite number of individual improvements. The ‘‘finite deviation’’
assumptions ensure the possibility to find a finite subgame every
Nash equilibrium of which is arbitrarily close to the set of Nash
equilibria of the original game. Thus, we obtain the ‘‘very weak
finite improvement’’ property of the original game: the set of
Nash equilibria is nonempty and can be approached with a finite
number of individual improvements starting anywhere in the set
of strategy profiles.

We understand potential games in a much broader sense than
Monderer and Shapley (1996), viz. we consider games where indi-
vidual improvements are acyclic. Thus, our Theorem 1 generalizes
the main result of Kukushkin (2011), which in its turn generalized
the good old ‘‘acyclicity plus open lower contour sets’’ theorem
(Bergstrom, 1975; Walker, 1977). As an application to economics,
we show that the assumptions of Theorem 1 hold in a rather
general class of Bertrand competition games (Propositions 4.1 and
4.2).

Strategic complements are also understood in a more general,
ordinal sense, as in Milgrom and Shannon (1994), rather than in
the cardinal one, as in Vives (1990). Moreover, we do not fix a
list of requirements a game must satisfy to deserve the badge
of ‘‘Strategic Complements’’. The point is that there are various
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versions of the single crossing and quasisupermodularity condi-
tions in the literature (Milgrom and Shannon, 1994; LiCalzi and
Veinott, 1992; Shannon, 1995; Quah, 2007; Quah and Strulovici,
2009; Kukushkin, 2013b) and ‘‘trade-offs’’ between them are pos-
sible, i.e., a stronger interpretation of one property coupled with a
weaker interpretation of the othermay have the same implications
as a weaker interpretation of the first property together with
a stronger interpretation of the second. Our Theorems 2 and 2′

extend themain result of Kukushkin et al. (2005) to infinite games,
even with some strengthening.

While the only known way to establish the existence of an
equilibrium in a potential game of Section 4 or an aggregative
game of Section 6 consists in following improvement paths, in
the case of strategic complements there is also an option of in-
voking Tarski’s fixed point theorem, which ensures equilibrium
existencewithout givingmuch information on better, or even best,
response dynamics (e.g., Theorem 5.1 of Vives (1990) establishes
the convergence of Cournot tâtonnement to equilibrium only if the
starting point belongs to a rather specific area in the set of strategy
profiles). The fact that the mere existence of an equilibrium can
be obtained under weaker assumptions than in our Theorem 2
may be of interest to some readers. (An anonymous referee even
refused to see any value in studying improvement dynamics when
the existence of an equilibrium can be established by othermeans.)
Accordingly, a list of such assumptions is given in Propositions 5.1
and 5.2. A comparison with an earlier result on the existence
of Nash equilibrium in a discontinuous game with a version of
strategic complements, Theorem 2 of Prokopovych and Yannelis
(2017), is in Section 7 (Remark 7.5).

In contrast to strategic complements, strategic substitutes, by
themselves, are not conducive to the existence of Nash equilib-
rium. In a gamewith additive aggregation, however, they do ensure
the existence of an equilibrium as was shown by Novshek (1985),
see also Kukushkin (1994). Dubey et al. (2006), having modified
a construction invented by Huang (2002) for different purposes,
created a tool applicable to some non-additive aggregation rules as
well. Kukushkin (2005) used the tool to show the convergence of
Cournot tâtonnement to equilibrium in aggregative games exhibit-
ing strategic complements, strategic substitutes, or a combination
of both. The most general description of aggregation rules for
which that trick can still work was given by Jensen (2010). Our
Theorem 3 establishes the existence and approachability of Nash
equilibrium in gameswith Jensen aggregation ruleswhere the best
responses may fail to exist.

Section 2 contains basic definitions and notations associated
with a strategic game. In Section 3, we reproduce Reny’s original
notions and more general topological conditions, which, via a
technical Proposition 3.4, play the key role in the rest of the paper.
In Sections 4–6,we consecutively apply Proposition 3.4 to potential
games, gameswith strategic complements, and aggregative games.
Several related questions of secondary importance are discussed
in Section 7. More complicated (or just tedious) proofs (of Proposi-
tions 3.2, 4.1 and 4.2, Theorems 2 and 3) are deferred to Appendix.

2. Basic definitions

A strategic game Γ is defined by a finite set of players N and,
for each i ∈ N , a strategy set Xi, a chain Ci (a utility scale), and a
‘‘generalized’’ utility function ui : XN → Ci, where XN :=

∏
i∈NXi

is the set of strategy profiles. For each i ∈ N , we denote X−i :=∏
j∈N\{i}Xj, and often use notation like (xi, x−i) ∈ XN .
With every strategic game,we associate this individual improve-

ment relation ▷Ind on XN (i ∈ N , yN , xN ∈ XN ):

yN▷Ind
i xN ⇀↽ [y−i = x−i & ui(yN ) > ui(xN )];

yN▷IndxN ⇀↽ ∃i ∈ N [yN▷Ind
i xN ].

By definition, a Nash equilibrium is amaximizer of the relation▷Ind

on XN , i.e., a strategy profile xN ∈ XN such that yN▷IndxN holds for
no yN ∈ XN . The set of Nash equilibria is denoted E(Γ ) ⊆ XN .

An (individual) improvement path is a (finite or infinite) se-
quence ⟨xkN⟩k=0,1,... such that xk+1

N ▷IndxkN whenever k ≥ 0 and
xk+1
N is defined. A strategic game Γ has the finite improvement
property (FIP, Monderer and Shapley (1996)) iff there is no infinite
improvement path. Γ has the weak finite improvement property
(weak FIP) iff, for every strategy profile x0N ∈ XN , there is a finite
improvement path x0N , . . . , xmN such that xmN ∈ E(Γ ). Obviously, FIP
implies weak FIP: every improvement path in a gamewith FIP ends
at aNash equilibriumafter a finite number of steps. Both properties
lookmore natural for a finite game although theymay be observed
in an infinite game now and then.

Henceforth, the strategy sets Xi are assumed to be topological
spaces; each chain Ci is endowed with its order interval topology;
the sets XN , CN :=

∏
i∈NCi, X−i, and XN × CN are endowed with

their product topologies. The topological closure of a subset Y of
any one of those spaces is denoted clY . We say that Γ has the
very weak FIP (Kukushkin, 2011) iff, for every x0N ∈ XN , there is
yN ∈ E(Γ ) such that for every open neighborhood O of yN there is a
finite improvement path x0N , . . . , xmN with xmN ∈ O. Slightly relaxing
the requirement, we say that Γ has the very–very weak FIP iff, for
every x0N ∈ XN , there is yN ∈ clE(Γ ) such that for every open
neighborhoodOof yN there is a finite improvement path x0N , . . . , xmN
with xmN ∈ O.

Remark. If XN is a metric space with a metric d, then the very–
very weak FIP can be reformulated as follows: for every x0N ∈ XN
and every ε > 0, there are yN ∈ E(Γ ) and a finite improvement
path x0N , . . . , xmN such that d(yN , xmN ) < ε. In this case, the difference
between the very weak FIP and the very–very weak FIP is whether
the same yN ∈ E(Γ ) can be chosen for all ε > 0 or not.

Proposition 2.1. A strategic gameΓ has the veryweak FIP if and only
if, for every x0N ∈ XN and every open neighborhood O of E(Γ ), there is
a finite improvement path x0N , . . . , xmN such that xmN ∈ O.

Proof. The necessity is obvious: every open neighborhood of E(Γ )
is simultaneously an open neighborhood of yN ∈ E(Γ ) from
the definition of the very weak FIP. To prove the sufficiency, we
suppose the contrary: for every yN ∈ E(Γ ), there is an open neigh-
borhood O(yN ) ∋ yN such that no finite improvement path started
at x0N ever reaches O(yN ). Then we set O :=

⋃
yN∈E(Γ )O(yN ); in the

case of E(Γ ) = ∅, O := ∅. Now O is an open neighborhood of E(Γ );
therefore, theremust be a finite improvement path x0N , . . . , xmN such
that xmN ∈ O. If E(Γ ) = ∅, we have xmN ∈ ∅; otherwise, there
holds xmN ∈ O(yN ) for some yN ∈ E(Γ ). In either case, we have a
contradiction. □

Proposition 2.2. A strategic game Γ has the very–very weak FIP
if and only if, for every x0N ∈ XN and every open neighborhood O
of clE(Γ ), there is a finite improvement path x0N , . . . , xmN such that
xmN ∈ O.

The proof is essentially the same as that of Proposition 2.1; only
E(Γ ) should be replaced with clE(Γ ).

3. Better-reply security and finite deviation

We start with auxiliary notations. Considering functions ui as
components of a mapping uN : XN → CN , we denote G the graph
of the mapping, i.e., the set of pairs ⟨xN , uN (xN )⟩ ∈ XN × CN for
all xN ∈ XN . For every xN ∈ XN , we denote Ḡ(xN ) := {vN ∈ CN |

(xN , vN ) ∈ clG} and perceive Ḡ as a correspondence from XN to CN .
Then, we reproduce Reny’s ( 1999) definitions. Player i ∈ N can

secure a payoff of α ∈ Ci at x∗

N ∈ XN iff there exists yi ∈ Xi such that
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