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and hence strong Nash equilibria exist: The players derive their utilities from the use of certain facilities;
all players using a facility extract the same amount of local utility therefrom, which amount depends
both on the set of users and on their actions, and is decreasing in the set of users; the ultimate utility
of each player is the minimum of the local utilities at all relevant facilities. Two important subclasses

are “games with structured utilities,” basic properties of which were discovered in 1970s and 1980s, and
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“bottleneck congestion games,” which attracted researchers’ attention quite recently. The former games
are representative in the sense that every game from the whole class is isomorphic to one of them. The
necessity of the minimum aggregation for the existence of strong Nash equilibria, actually, just Pareto
optimal Nash equilibria, in all games of this type is established.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Both motivation for and the structure of this paper closely re-
semble those of Kukushkin (2007). Moreover, the models consid-
ered in either paper, when described in very general terms, sound
quite similarly.

The players derive their utilities from the use of certain objects.
Rosenthal (1973) called them “factors”; following Monderer and
Shapley (1996), we call them “facilities” here. The players are free
to choose facilities within certain limits. All the players using a
facility extract the same amount of “local utility” therefrom, which
amount may depend both on the set of users and on their actions.
The “ultimate” utility of each player is an aggregate of the local
utilities obtained from all relevant facilities.

Four crucial differences should be listed at the start. First,
in Kukushkin (2007), following Rosenthal (1973), each player
summed up relevant local utilities (strictly speaking, monotone
transformations were allowed); here, each player takes into ac-
count only the worst local utility (again, monotone transforma-
tions may be allowed).

Second, the main results of Kukushkin (2007) were about the
acyclicity of individual improvements and, accordingly, the exis-
tence of Nash equilibria. Here, it is about the acyclicity of coalitional
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improvements and, accordingly, the existence of strong Nash equi-
libria.

Thirdly, we have to assume “negative impacts” here, i.e., when-
ever a new player starts to use a facility, those already there cannot
be better off. In Kukushkin (2007), as well as in Rosenthal (1973),
there was no need for such an assumption.

Finally, the games considered in Kukushkin (2007) were
partitioned into two classes: “generalized congestion games” and
“games with structured utilities”. In the former class, the players
choose which facilities to use and do not choose anything else;
in the latter, each player chooses how to use facilities from a
fixed list. Actually, the possibility of certain combinations was
overlooked there, see Le Breton and Weber (2011), but the range of
permissible combinations is rather limited in any case. Here, both
those classes are present too, but “which” and “how” choices could
be combined arbitrarily. It should be mentioned that, both here
and in Kukushkin (2007), games with structured utilities form a
representative subclass.

The idea of games with structured utilities and the minimum
aggregation originated in Germeier and Vatel’ (1974) although in a
much less general form. Their approach was developed further in a
series of papers, see Kukushkin et al. (1985) and references therein.

The first, to my knowledge, result on the existence of strong
Nash equilibria in congestion games, even though without a refer-
ence to Rosenthal (1973), was in Moulin (1982, Chapter 5): pirates
were going to a treasure island; each pirate could choose between
two ships, and the more pirates on board of either ship, the slower
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it went. Since each player could only use a single facility (ship),
the application of the minimum aggregation may be assumed, and
hence that example belongs to the class of games considered here.

A systematic study of conditions under which a congestion
game possesses strong Nash equilibria was started by Holzman
and Law-Yone (1997), and has been continued (Holzman and
Law-Yone, 2003; Rozenfeld and Tennenholtz, 2006; Epstein et al.,
2009; Holzman and Monderer, 2015). As is natural in light of the
necessity part of our Theorem 6.1, all those results need specific
assumptions on available strategies.

The fact that the minimum (“bottleneck”) aggregation and
negative impacts in congestion games are conducive to coalition
stability was gradually noticed quite recently (Fotakis et al., 2008;
Harks et al., 2013). The results of those papers are rather similar to
our Theorem 4.1, but obtained in a much less general models.

Here, the same fact is expressed in its most general form: As
long as each player uses the minimum aggregation and there are
negative impacts at each facility, it does not matter which subsets
of facilities and what methods of using them are available to
each player: all coalitional improvements are acyclic (to be more
precise, there exists a ““strong w-potential”’) and hence strong Nash
equilibria exist and, in a sense, attract adaptive dynamics.

Theorem 4.4 shows that every game satisfying the assumptions
of Theorem 4.1 is isomorphic to a game with structured utilities
and the minimum aggregation. In other words, the main findings
of Kukushkin et al. (1985) remain relevant to every model
of this type that has been considered since then. That paper,
however, was silent on some important issues, e.g., algorithmic and
computational aspects.

Perhaps the most interesting results of this paper are Theo-
rems 6.1 and 6.3, which establish the necessity of the minimum
aggregation for the existence, regardless of other characteristics
of the game, of Pareto optimal Nash equilibria, to say nothing
of strong Nash equilibria, and hence for the acyclicity of coali-
tional improvements as well. The first result of this kind was in
Kukushkin (1992); however, it was designed for a particular class
of games, so rather peculiar combinations of the minimum and
maximum were allowed, which are not good in a more general
case.

The minimum operator is not at all unusual in the theory of
production functions. Galbraith (1958, Chapter XVIII) explicitly
invoked Leontief’s model to justify an attitude to public and private
consumption (“social balance”) that sounds indistinguishable from
the minimum aggregation. Our Theorem 4.1 shows that agents
who have internalized this attitude do not need any taxes to
provide for an efficient level of public consumption; it is difficult
to say whether Galbraith himself expected such a conclusion.

Models of public good provision where the output of the
public good is the minimum or maximum of private contribu-
tions (“weakest-link” or “best-shot”) are considered now and then
(Hirshleifer, 1983; Cornes and Hartley, 2007; Boncinelli and Pin,
2012). Such production functions have some nice implications in
that context too, but not as good as here; in particular, the exis-
tence of a strong Nash equilibrium is not guaranteed.

Section 2 introduces principal improvement relations associ-
ated with a strategic game. Section 3 provides a formal descrip-
tion of our basic model as well as its main structural properties.
Throughout Section 4, the players use the minimum aggregation.
The main results there are Theorems 4.1 and 4.4.

In Section 5, we consider the maximum aggregation rule,
which has the same implications in games with positive impacts
(Theorem 5.1). The leximin/leximax aggregation of local utilities
is also considered there. Its properties are much closer to those
of additive aggregation than minimum/maximum ones; it ensures
the acyclicity of individual improvements, but not of coalitional
ones.

Section 6 contains the characterization results, Theorems 6.1
and 6.3, which establish the necessity of the minimum aggregation
for the existence of Pareto optimal Nash equilibria under broad
assumptions. In Section 7, several related questions of secondary
importance are discussed.

More complicated proofs (of Theorems 2.1, 6.1 and 6.3) are de-
ferred to Appendix.

2. Improvement dynamics in strategic games

A strategic game I' is defined by a finite set of players N (we
denote n = |N|), and strategy sets X; and utility functions u; on
Xy = [y Xi for alli € N. We denote & = 2V \ {(J} (the set of
potential coalitions) and X; = [],, X; for eachI € ; instead of
Xw\(iy and Xyy;, we write X_; and X_;, respectively. It is sometimes
convenient to consider utility functions u; as components of a
“joint” mapping uy: Xy — RV.

With every strategic game, a few improvement relations on Xy
are associated (I € N, yn, Xy € Xy):

INBIXN = [y = X2 & Vi€ T[ui(yn) > wixw)]]; (1a)

Ind
YN

(individual improvement relation);

Xy <= FieN[yn > i) xn| (1b)

% xy = 3 € N [yn > xn] (1c)

(strong coalitional improvement relation).

A maximizer of an improvement relation >, i.e., a strategy profile
Xy € Xy such that yy > xy holds for no yy € Xy, is an equilibrium:
aNash equilibrium if > is "¢; a strong Nash equilibrium if > is 55°2,

An individual improvement path is a (finite or infinite) sequence
{(xK }ezo.1... such that x5t oI"dxk whenever x5 is defined; an
individual improvement cycle is an individual improvement path
such that X! = x% for m > 0. A strategic game has the
finite individual improvement property (FIP; Monderer and Shapley,
1996) if there exists no infinite individual improvement path;
then every individual improvement path, if continued whenever
possible, reaches a Nash equilibrium in a finite number of steps.

Replacing " with -°2, we obtain the definitions of a coali-
tional improvement path, a coalitional improvement cycle, and the
finite coalitional improvement property (FCP). The latter implies that
every coalitional improvement path reaches a strong Nash equilib-
rium in a finite number of steps.

Remark. Under our definitions, a single strategy profile is an im-
provement path (both individual and coalitional) by itself. This
peculiarity causes no harm and is helpful in the formulation of
Theorem 2.1.

For a finite game, the FIP (FCP) is equivalent to the acyclicity
of the relation ™ (=°?) and is equivalent to the existence of a
“potential” in the following sense. An order potential of I" is an
irreflexive and transitive relation > on Xy satisfying

l>Ind

Vxn, YN € Xy [yn > X = ynv > xn]. (2)

A strong order potential of I' is an irreflexive and transitive relation
> on Xy satisfying

0a

VXN, YN € Xn [yn 5% %y = yn > xy ] (3)

In an infinite game, the absence of finite cycles does not mean
very much by itself. One approach is to employ a more demanding
notion of a potential. A binary relation > on a metric space Xy is
w-transitive if it is transitive and the conditions xy = limy_. x,’i,

and x5t >~ xK forallk =0, 1, ... always imply x& > x9.
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