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a b s t r a c t

This paper studies contests in which three or more players compete for two nonidentical prizes. The
players have distinct constant marginal costs of performance or bid, which are commonly known. We
show that the contests have a generically uniqueNash equilibrium, and it is inmixed strategies.Moreover,
we characterize the equilibrium payoffs and strategies in closed form.We also study how the equilibrium
payoffs and strategies vary with the prizes. As an application, we numerically compute the optimal
allocation of prizes that maximizes the total expected bid of asymmetric players.
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1. Introduction

Contests with asymmetric players and heterogeneous prizes
are predominant. For example, students of various intellectual
levels compete for different grades, athletes of different abilities
compete for different medals, and employees with different expe-
rience compete for different promotion opportunities. If we rank
the prizes in a contest from the highest value to the lowest, we
obtain a nonincreasing sequence of prize values, to which we
refer as the prize sequence. The prize sequences in these contests
have different shapes. For instance, in the 2016 U.S. Open tennis
tournament, the prize is $3.5 million for the winner, $1.75 million
for a runner-up, and $0.875 million for a semifinalist. A prize is
roughly half of the value of the next higher prize. In contrast, the
prizes in the golf tournaments do not have the same property. For
example, in 2016 U.S. Open golf tournament, the prizes are $1.8
million for the champion, $1.1million for the runner-up, and $0.68
million for the third place.

The shape of the prize sequence is especially important if the
players have different abilities. To see why, if the prize sequence is
very concave, the difference between higher prizes is small relative
to that between lower prizes, which leads to less competition
among the players with stronger abilities. In contrast, if the prize
sequence is very convex, the difference between lower prizes is
small relative to that between higher prizes, which leads to less
competition among the players with lower abilities.
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In this paper, we consider a complete-information all-pay con-
test among players of distinct constant marginal costs and two
prizes of distinct values. This is the simplest setup to introduce
prize sequences of different concavity/convexity, measured in the
ratio of the difference between the two prizes to the difference
between the lower prize and zero. We show that the contest has
a unique Nash equilibrium, and it is in mixed strategies. In addi-
tion, we provide a closed-form characterization of the equilibrium
payoffs and strategies, and computer programs to numerically
compute them.

This paper’s contribution is threefold. First, it shows equilib-
rium uniqueness. The uniqueness is not obvious because multi-
ple equilibria have been found in contests with identical players
(e.g. Baye et al., 1996). In contrast, Siegel (2010) constructs a
unique Nash equilibrium in contests with identical prizes and gen-
eral nonlinear cost functions. This paper shows that his method,
with non-trivial modifications, also applies to contests with asym-
metric players and two distinct prizes, and can be used to show the
uniqueness of Nash equilibrium.

Second, this paper provides a closed-form characterization of
equilibrium payoffs and strategies in contests with two prizes of
arbitrary values. As a result, it unifies the existing equilibriumchar-
acterizations with specific prize sequences, and we can illustrate
how the unique equilibrium changes from one type to another
as the prizes change. In addition, Xiao (2016) illustrates in an
example that a convex prize sequence can lead to an equilibrium
in which a player mixes over a non-interval set of bids. As a result
of our closed-form characterization, we provide a necessary and
sufficient condition for this to happen.

Third, this paper can be used to test conjectures on variants of
all-pay auctions and contests aswell as on their design questions. If
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there is significant heterogeneity among either players or prizes, it
is typically difficult to characterize equilibria in these games. How-
ever, our closed-formcharacterization and computer programs can
be used to test conjectures and determine what results to expect.
Specifically, we numerically compute the optimal allocation of
prizes that maximizes the total expected bid of three asymmetric
players.We find that the resulting optimal prize sequence contains
either a single prize or two equal prizes, which complements the
existing results by examining all the marginal cost profiles in a
simplex, including the extreme values of marginal costs that have
been previously studied.

Literature There is a large literature on contests and, closely
related, auctions. See Konrad (2009) for a comprehensive survey.
This paper is closely related to auctions and contests with com-
plete information. As in this paper, Nash equilibria in these setups
are usually in mixed strategies. A variety of prize structures are
studied. For example, there is a large literature on contests with
a single prize (e.g., Baye et al., 1996; Che and Gale, 1998). Identical
prizes are considered by Clark and Riis (1998) and Siegel (2009,
2010). Arithmetic prize sequences – with constant first-order dif-
ferences – are studied by Bulow and Levin (2006) and González-
Díaz and Siegel (2013).1 Xiao (2016) considers geometric prize
sequences, with a constant ratio of two consecutive prizes, and
quadratic prize sequences,with constant second-order differences,
where both sequences are convex.

The main difference of this paper from the above is that we
consider both concave and convex prize sequences. Moreover, we
consider how the concavity/convexity affects asymmetric players.
Barut and Kovenock (1998) study arbitrary prize sequences in
contests among identical players. This paper extends their setup
to asymmetric players but restricts it to two distinct prizes. Our
findings are different from theirs. We find a unique equilibrium
in contrast to their multiple equilibria. In addition, the prize allo-
cation affects the total expected bid in our setup while the total
expected bid is independent of prize allocations in their setup.2
Azmat and Möller (2009) also consider symmetric players in a
study of competing contests. Sela (2012) studies sequential all-
pay auctions with one object in each stage. Olszewski and Siegel
(2016a) study heterogeneous prizes and asymmetric players in
large contests where the numbers of prizes and players go to
infinity. In contrast, this paper considers a similar contest but with
a finite number of prizes.

There is a literature on contests with asymmetric information,
in contrast to the complete information in this paper. For ex-
ample, Rosen (1986) studies the role of convex prize sequences
in single-elimination tournaments, in which the players’ effort is
not observable. Moldovanu and Sela (2001) study the optimal
allocation of prizes for ex ante symmetric players. All-pay auctions
between two ex ante asymmetric players are studied in various
setups (e.g., Amann and Leininger, 1996; Lizzeri and Persico,
2000; Siegel, 2014; and Rentschler and Turocy, 2016). However,
we cannot study the effects of different prize structures on asym-
metric players in those setups because they have either a single
prize or symmetric players. Parreiras and Rubinchik (2010, 2015)
study all-pay auctions of multiple objects and multiple ex ante
asymmetric players. In contrast to this paper, the equilibria in those
auctions are in pure strategies.

The remainder of this paper is organized as follows. Section 2
introduces a contest model among three players. Section 3 char-
acterizes the equilibrium payoffs, and Section 4 characterizes the
equilibrium strategies. Section 5 generalizes the results to more
than three players and studies the optimal prize allocation for
asymmetric players.

1 Bulow and Levin (2006) study labor markets in which firms compete for work-
ers. Their model can be transformed into a contest with arithmetic prize sequences.
2 More precisely, for a fixed budget of prize money, any prize sequence whose

lowest prize is zero maximizes the total expected bid.

2. Model

For simpler notation, Sections 2 to 4 focus on a contest with
three players 1, 2, 3. Then, Section 5 extends the results to more
players. Each player i has a constant marginal cost of bid ci > 0,
and the marginal costs are distinct 0 < c1 < c2 < c3.3 Therefore,
a bid si ≥ 0 incurs a cost of cisi to player i. Player 1 is the strongest
because it costs him the least to achieve the same bid. The contest
has two distinct prizes v1 > v2 > 0.4 Let c = (c1, c2, c3) be the cost
sequence and v = (v1, v2) be the prize sequence. Then, a contest
is characterized by (c, v) . The game is of complete information,
so (c, v) is commonly known. Let the first order differences of the
prizes be ∆1 = v1 − v2 and ∆2 = v2 − v3, where v3 = 0. Then,
the prize sequence is convex if ∆1 > ∆2, linear if ∆1 = ∆2,
and concave if ∆1 < ∆2. We use the ratio ∆1/∆2 to measure the
convexity of the prize sequence, and we say a sequence is more
convex than another if the ratio is larger.

Each player i chooses a bid si ≥ 0 simultaneously. The player
with the highest bid receives the highest prize v1; the player with
the second-highest bid receives the second-highest prize v2; and
the others receive no prize. In the case of a tie, ranks are allocated
randomly with equal probabilities to tying players. For example,
suppose s1 = s2 > s3, then with probability 1/2, player 1 receives
v1 and player 2 receives v2; and with probability 1/2, player 2
receives v1 and player 1 receives v2. If s1 > s2 = s3, player
2 receives v2 with probability 1/2, and player 3 receives v2 with
probability 1/2. If player i wins prize vk with bid si, his payoff is
vk − cisi; if a player chooses bid si ≥ 0 but wins no prize, his
payoff is −cisi. All players are risk neutral. We consider only Nash
equilibrium throughout the paper.

3. Equilibrium payoffs

We first introduce a sequence of definitions, and show in Propo-
sition 1 that the equilibrium payoffs can be constructed using the
definitions. After that, Proposition 2 characterizes equilibriumpay-
offs in closed form, and Corollary 1 discusses comparative statics of
the equilibrium payoffs with respect to the prize sequence.

We use a c.d.f. Gi : [0, +∞) → [0, 1] to represent player i’s
(mixed) strategy. The support of Gi is the smallest closed set to
whichGi assigns probability 1. Before the discussion of equilibrium
payoffs, we introduce some notation in a two-player contest and a
three-player contest.

First, consider a two-player contest inwhich the top twoplayers
1 and 2 compete for prizes v1 and v2. The two-player contest is
isomorphic to a two-player complete-information all-pay auction,
and it is well-understood.5 The contest has a unique equilibrium,
and it is in mixed strategies.6 The equilibrium strategies are

G2
1(s) = c2s/(v1 − v2) (1)

G2
2(s) = 1 − c1/c2 + c1s/(v1 − v2) (2)

for s ∈ [0, s̄21], where s̄21 = (v1 − v2)/c2. Throughout the paper,
superscripts indicate the number of players in a contest. Fig. 1
illustrates the equilibrium strategies if c1 = 1 , c2 = 4 and v1 = 4,
v2 = 3. The equilibrium payoffs are

u2
i = v1 − (v1 − v2)ci/c2

for i = 1, 2.

3 If some players have identical marginal costs, there may be multiple Nash
equilibria, so our uniqueness result does not apply. See, for instance, Baye et al.
(1996).
4 See Siegel (2010) for the case with v1 = v2 .
5 The contest is isomorphic to the complete-information all-pay auctionwith two

playerswhose values are (v1−v2)/c1 and (v1−v2)/c2 . The two games have the same
equilibrium.
6 See, for instance, Che and Gale (2006) and Kaplan and Wettsstein (2006).
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