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a b s t r a c t

We develop easy-to-verify conditions to assure that a comparative statics exercise in a dynamic general
equilibrium model is feasible, i.e., the implicit function theorem is applicable. Consider an equilibrium
equation, Υ (k, E) = k of a model where an equilibrium variable (k) is a continuous bounded function of
time, real line, and the policy parameter (E) is a locally integrable function of time. The key conditions are
time invariance of Υ and the requirement that the Fourier transform of the derivative of Υ with respect
to k does not return unity. Further, in a general constant-returns-to-scale production and homogeneous
life-time-utility overlapping generations model we show that the first condition is satisfied at a balanced
growth equilibrium and the second condition is satisfied for ‘‘almost all’’ policies that give rise to such
equilibria.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Policy evaluation in a general equilibrium model with overlap-
ping generations is perceived as a daunting task, and our objective
is to provide a transparent way to make it more reliable. It is
common, even in the case of a partial equilibrium analysis, to first
look for equilibrium using numerical methods, then calibrate or
estimate the parameters of the model to fit a given data set, and
only then to perform policy ‘‘experiments’’, i.e., to evaluate the
reaction of equilibrium variables given the calibrated parameters
to a ‘‘shock’’ in policy, see, for example, Adjemian et al. (2011)
for the description of the algorithm. In this paper we work with
policies that are not limited to one-time shocks, rather, we allow
them to be functions of time and of individual characteristics. We
offer the groundwork for an analytical approach: as in the classical
textbook case à la Debreu, we show that implicit function theorem
canbe applied to an equilibriumequation (Υ (k, E) = k) for ‘‘almost
any’’ distribution of endowments (E) that yields a balanced growth
equilibrium, in which case the equilibrium variables (e.g., k) can
be viewed as smooth functions of endowments (E), thought of as
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a transfer policy.1 Thus, the equilibrium responses generated by
such comparative statics are data-independent and can be directly
calculated from the specification of the model.2

The analytical approach we offer can be viewed as complimen-
tary to the numerical one. Establishing local uniqueness (regu-
larity) of equilibria validates the numerical approach by assuring
that the close-by equilibrium after the policy change is unique;
moreover, analytical approximation for the reaction of equilibrium
to the policy change provides a robustness check for the parallel
numerical calculation.

We find that the key sufficient condition for regularity of equi-
libria is time-invariance, implying, in particular, that time in the
model should be the whole real line. Its alternative, the half-line,
or assuming existence of some ‘‘starting point’’ at zero, prevents
one from properly modelling perfect foresight, cf. Burke (1990),
and might be responsible for indeterminacy, cf. Kehoe and Levine
(1985) and Demichelis and Polemarchakis (2007), and hence in-
ability to predict the effects of a policy. With time-invariance,
verifying conditions needed for the implicit function theorem
amounts to checking differentiability of the equilibrium map (Υ )

1 See Mertens and Rubinchik (2017) for the overview of the existing applications
of ift to equilibria in infinite economies and the reasonswhy they cannot be applied
to the overlapping generations models.
2 Note that objective here is distinct from a comparison across steady states or

balanced growth paths, as in d’Albis (2007); Mierau and Turnovsky (2014): the
latter can be useful, for example, in comparing across countries, each following its
own path. Our analysis can be used to predict changes that will occur in the wake
of an announcement of a new policy in a given economy.
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and calculating Fourier transform of the derivative with respect to
the endogenous variable (k).

This last step, based on Wiener’s theorem, Wiener (1932), was
also used in Mertens and Rubinchik (2017), where generic regular-
ity and stability was demonstrated for a parametric version of an
overlapping generations economywith Cobb–Douglas production.
The genericity argument there was provided with respect to the
parameters of the model.

The paper consists of two main parts. First we formulate the
result for an arbitrary fixed point equation and then illustrate our
approach using an overlapping generations model with a general
smooth constant-returns-to-scale technology and assuming only
time-separability and homogeneity of life-time consumption.3
This ratherminimal set of assumptions allows for balanced growth
equilibria, as is well-known in the literature (King et al., 2002).
This is a base-line equilibrium, to which the policy change is
applied, which can then trigger a non-stationary equilibrium re-
sponse. Characterization of the equilibria is based on Mertens and
Rubinchik (2013). We demonstrate how to verify our sufficient
conditions for the implicit function theorem in this case. In addi-
tion, we show that comparative statics is feasible for ‘‘almost any’’
transfer policy, i.e., the set of policies that is open and everywhere
dense in the correspondingBanach space of policies. Proofsmissing
in the text, detailed presentation of the model (that summarizes
Mertens and Rubinchik (2013)) and an explicit calculation of the
equilibrium response of capital to a change in endowments are in
the appendix.

2. The first formulation of the problem

Let P, V be the space of parameters and variables of an economic
model respectively, both are Banach spaces. In the example that
follows the space of parameters (transfers) is the space of locally
integrable functions and the equilibrium variable (capital path) is
a continuous uniformly bounded function defined on the real line
(time).

Assume that for a given model, equilibrium conditions can
be reduced to a fixed-point equation in variable k ∈ V , given
parameters E ∈ P ,

F (k, E) def
= Υ (k, E) − k = 0 (1)

The objective of the modeller is to assure that one can evaluate
the equilibrium response of k to the change in the policy parameter
E at some equilibrium k0 given baseline policy E0.

To illustrate the idea, let us view E as a function of two real
variables: an individual characteristic (age) and time. The initial,
base-line, equilibrium is stationary. There, E0 is constantwith time,
though it can still be a non-trivial function of individual age, thus
describing some fixed system of transfers across individuals of
different ages, for example as in a pay-as-you-go pension system.
Then the change in the policy parameter, δE, describes how the
transfer system is altered across ages and over time. The resulting
reaction of equilibrium variables, in particular capital path, is what
we want to calculate.

For finite economies such calculations are done by appealing
to an implicit function theorem (ift), which requires differentia-
bility of F and invertibility of the derivative ∂F

∂k at the base-line
point (k0, E0). We follow the same route here. First, let us state
the suitable version of the implicit function theorem (ift). The
differentiability below is in the sense of Fréchet.

3 Such models are indispensable if one has to evaluate the effect of a policy that
involves an intergenerational transfer, such as a pension reform for example, cf. e.g.,
de la Croix and Michel (2002) for the overview.

Theorem 1 (Schwartz, 1997, Thm. 3.8.5.). Let E , F , G be three
Banach spaces, F be a continuously differentiable map from an open
set O ⊂ E × F into G , F : (k, E) ↦→ F (k, E). Let (k0, E0) be a point in
O, F (k0, E0) = 0.

If ∂F
∂k (k

0, E0) is invertible in the space of linear operators from E

to G , then there exist open sets A ⊂ E and B ⊂ F , A × B ⊂ O
such that for every E ∈ B, there is a unique solution (in k) of the
equation F (k, E) = 0 which belongs to A and there is a continuously
differentiable function φ : B → A such that F (φ(E), E) = 0. Its
derivative is given by

φ′(E0) = −

(∂F
∂k

(k0, E0)
)−1

◦

(∂F
∂E

(k0, E0)
)

(2)

Remark 1. Notice that in the notation of Theorem 1, ∂F
∂k (k, E) is

invertible in a neighbourhood of (k0, E0), since (k, E) ↦→
∂F
∂k (k, E)

is a continuous map invertible at (k, E) = (k0, E0). It follows
that there exists a neighbourhood N of E0 such that ∂F

∂k (φ(E), E) is
invertible for any E ∈ N .

Now we have two tasks.
The first task is to find sufficient conditions for ∂F

∂k (k
0, E0) to be

invertible.
The second task is to show that invertibility holds for a generic

set of parameters, i.e., for an open dense subset of P . The ift
already yields that the set is open given the differentiability of F ,
cf. Remark 1. The argument is completed in Section 4.3.

3. The first task

Our first task is to assure invertibility of the derivative of F ,
which defines the equilibrium condition (1), with respect to the
endogenous variable (k) at the base-line equilibrium, k0.

First, observe that if F is differentiable then its derivative can be
represented as the following difference:

∂F
∂k

(k0, E0) =
∂Υ

∂k
(k0, E0) − I , where I is the identity operator. (3)

Notice that the derivative ∂Υ
∂k (k

0, E0) is a bounded linear operator
from V to V , where V is a Banach space. Invertibility of the differ-
ence as in (3) is closely related to the notion of a spectrum.

Definition 1. A spectrum of an operator T from a Banach space to
itself is the set {z ∈ C | T − zI is not invertible}.

Hence, our task is reduced to verifying that unity (z = 1) is not
in the spectrum of ∂Υ

∂k (k
0, E0), viewed as an operator. For that we

useWiener’s theorem formulated for the space L∞(R) of uniformly
bounded functions onR. The theorem implies that the spectrum of
a convolution operator is a closure of the set of the values returned
by its Fourier transform.

Definition 2.

(i) For f ≥ 0 Lebesgue-measurable and a bounded measure µ

the convolution µ ⋆ f is the equivalence class of t ↦→
∫
f̃ (t −

s)µ(ds) for any f̃ ∈ f .
(ii) For a boundedmeasureµ, its Fourier transform (FT) is µ̂(ω)=∫

eiωtµ(dt) (̂g for g ∈ L1).

For a function f ∈ L1(R) define a bounded operator Bf :

L∞(R) → L∞(R) by

Bf : g ↦→ f ⋆ g

Theorem 2 (Wiener, 1932). The spectrum of Bf is {̂f (ω) | ω ∈

R} ∪ {0} ⊂ C.
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