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a b s t r a c t 

Rough set theory is a powerful mathematical tool to deal with uncertainty in data analysis. Interval- 

valued information systems are generalized models of single-valued information systems. Recently, un- 

certainty measures for complete interval-valued information systems or complete interval-valued decision 

systems have been developed. However, there are few studies on uncertainty measurements for incom- 

plete interval-valued information systems. This paper aims to investigate the uncertainty measures in in- 

complete interval-valued information systems based on an α-weak similarity. Firstly, the maximum and 

the minimum similarity degrees are defined when interval-values information systems are incomplete 

based on the similarity relation. The concept of α-weak similarity relation is also defined. Secondly, the 

rough set model is constructed. Based on this model, accuracy, roughness and approximation accuracy 

are given to evaluate the uncertainty in incomplete interval-valued information systems. Furthermore, 

experimental analysis shows the effectiveness of the constructed uncertainty measures for incomplete 

interval-valued information systems. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The uncertainty and vagueness of data play an important role 

in practical applications, so how to capture the uncertainty of 

information becomes more and more popular. Rough set theory, 

proposed by Pawlak [1,2] , is a powerful mathematical tool to deal 

with uncertainty, granularity and incompleteness of knowledge in 

information systems. However, for the reason that classical rough 

set can only deal with complete and symbolic datasets, many 

scholars have developed the theory from different perspectives. 

With the swarming of extended models, they are popular in a 

wide range of fields [3–22] , such as machine learning [23–29] , 

pattern recognition [30–32] , medical diagnosis [5] and decision 

making [33–36] . Beyond all doubt, rough set theory has become 

an efficient tool dealing with uncertainty and vagueness. 

Among so many complex data, interval-valued data have at- 

tracted much attention of scholars from all over the world. Due 

to its rich semantic explanations and flexibility, interval-valued 

data have been widely used in economics analysis [37] , machine 
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learning [38] , manufacturing processes [39] and so on. With the 

development of rough set theory, many results have been achieved 

to analysis the uncertainty of interval-value from different view- 

points. Dai et al. [40] proposed a θ-rough degree to measure the 

uncertainty of interval-value information systems. Furthermore, 

Dai et al. [41] addressed the extended conditional entropy to mea- 

sure the uncertainty of interval-value decision systems which pro- 

vided a new approach for decision rule evaluation and knowledge 

discovery. It is common to obtain missing values in real life for 

certain reasons, such as omissions, measurement malfunction and 

missing in storage. Roughly speaking, there are three main strate- 

gies for dealing with incomplete information systems [42] : (1) 

completion, i.e. the certain value takes the place of the unknown 

value, which could be the most common value, or the mean, or the 

median of all known values of the attribute. Yang et al. [43] pre- 

sented a dominance relation and generated the optimal decision 

rules in incomplete interval-valued information systems. In this 

model, they chose the left smallest and right biggest value as lower 

bound and upper bound of the incomplete interval value based on 

certain attribute respectively. (2) deletion, i.e. we discard all the 

instances containing any unknown attribute value. Maybe we drop 

some important information in this way; (3) “best left alone”, 

i.e. we consider the unknown values as a special symbol. For the 
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first two strategies, the original structure of data is destroyed and 

the incomplete data couldn’t be used sufficiently, hence, the third 

is more significative. Kryszkiewicz proposed a kind of tolerance 

relation [44,45] for incomplete information systems, however, it 

is only for single-valued decision systems rather than incomplete 

interval-valued information systems. This paper aims to construct 

uncertainty measures for incomplete interval-valued information 

systems by proposing an alpha-weak similarity relation. 

The remainder of this paper is organized as follows. In 

Section 2 , some basic knowledge of rough set theory are reviewed. 

In Section 3 , we construct a α-weak similarity relation in incom- 

plete interval-valued information systems and give the properties. 

In Section 4 , we construct the extended rough set model based 

on α-weak similarity and study the properties of uncertainty 

measure. In Section 5 , accuracy and approximation accuracy are 

tested in some real datasets. Section 6 concludes the whole paper. 

2. Preliminary knowledge 

In this section, we firstly review some basic concepts in rough 

set theory. 

2.1. Basic concepts in rough set theory 

For the information system δ = (U, A ) , where U denotes a non- 

empty finite set of objects, which is called the universe; A denotes 

a non-empty finite set of conditional attributes. Each attribute sub- 

set B ⊆ A determines a binary indiscernible relation as follows: 

IND (B ) = 

{(
u i , u j 

)
∈ U 

2 |∀ a ∈ B, a ( u i ) = a 
(
u j 

)}
(1) 

By the relation IND ( B ), we obtain the partition of U denoted by 

U / IND ( B ) or U / B . For B ⊆ A and X ⊆ U , the lower approximation 

and the upper approximation of X can be defined as follows [1] : 

B X = { u i ∈ U| [ u i ] ⊆ X } 

B X = { u i ∈ U| [ u i ] ∩ X � = ∅ } 
where B X is a set of objects that belong to X with certainty, while 

B X is a set of objects that possibly belong to X. If B X = B X, X is 

named B-definable. Otherwise, X is named B-rough. Based on B X 

and B X, the B-positive region, B-negative region and B-borderline 

region of X are defined respectively as follows: 

P O S B (X ) = B X 

NE G B (X ) = U − B X 

B N B = B X − B X 

Pawlak proposed two numerical measures for evaluating the 

uncertainty of the given object set X : accuracy and roughness, 

which can be denoted as follows: 

αB ( X ) = 

| B X | ∣∣B X 

∣∣
ρB (X ) = 1 − αB (X ) = 1 − | B X | 

| B X | 
where | · | denotes the number of collection elements. The accuracy 

and roughness describe the completeness and incompleteness in 

the knowledge about the given object set X respectively. 

2.2. Incomplete interval-valued information systems and incomplete 

interval-valued decision systems 

An interval-valued information system is a quadruple 

I I S = 〈 U, A, V, f 〉 , where U is a nonempty set with a finite number 

of objects, called the universe; A is a nonempty finite set of 

conditional attributes; V is the set of interval-value domain of 

attributes; f is an information function which allocates values by 

domains of attributes to objects, for instance, ∀ a ∈ A, x ∈ U, f ( a, 

x ) ∈ V , where f ( a, x ) denotes the value of attribute a of object x . If 

there exists an a ∈ A, x ∈ U such that f ( a, x ) is an incomplete interval 

value containing missing bound(s) (missing the lower bound ([ ∗, 

x ]), missing the upper bound ([ x , ∗]) or missing both the lower and 

upper bounds ([ ∗, ∗])), then the interval-valued information system 

is called an Incomplete Interval-valued Information System (IIIS). 

Otherwise, it is called a complete interval-valued information 

system. Thus, an IIIS can be denoted as: I I I S = 〈 U, A, V, f 〉 , where 

[ ∗, x ], [ x , ∗], [ ∗, ∗] ∈ V . 

A decision system is a quadruple I I DS = 〈 U, C ∪ { d} , V, f 〉 , where 

d is the decision attribute set, C is the conditional attribute set. 

If there exists an a ∈ A, x ∈ U such that f ( a, x ) is an interval value 

containing missing bound(s) (missing the lower bound ([ ∗, x ]), 

missing the upper bound ([ x , ∗]) or missing both the lower and 

upper bounds([ ∗, ∗])), then the decision system is called an Incom- 

plete Interval-valued Decision System (IIDS). Thus, an IIDS can be 

denoted as: I I DS = 〈 U, C ∪ { d} , V, f 〉 , where [ ∗, x ], [ x , ∗], [ ∗, ∗] ∈ V . 

2.3. Tolerance relation in IIS 

Definition 1 [44,45] . Given an incomplete information system 

I I S = 〈 U, A, V, f 〉 , ∗ ∈ V = ∪ a ∈ A V a , for any subset of attributes B ∈ A , 

let T IIS ( B ) denote the binary tolerance relation between objects that 

are possibly indiscernible in terms of values of attribute B. T IIS ( B ) 

is defined as 

T I I S (B ) = { ( x, y ) |∀ a ∈ B, f (a, x ) 

= f (a, y ) ∨ f (a, x ) = ∗ ∨ f (a, y ) = ∗} (2) 

T IIS ( B ) is reflexive and symmetric, but not transitive. 

Definition 2 [46] . The tolerance class of an object x with respect 

to an attribute set B is defined by: 

T I I S B (x ) = { y | ( x, y ) ∈ T I I S (B ) } = { y |∀ a ∈ B, f (a, x ) 

= f (a, y ) ∨ f (a, x ) = ∗ ∨ f (a, y ) = ∗} (3) 

3. α-weak similarity relation for incomplete interval valued 

information systems 

Unlike real values, it is difficult to compare two interval values 

using traditional methods. Enlightened by the similarity mea- 

sure for general interval-valued data proposed in [47] , we give a 

definition of similarity between two intervals. 

Definition 3. Let U = { u 1 , u 2 , . . . , u n } be the universe of interval 

values, ∀ u i , u j ∈ U , u i = [ u i 
−, u i 

+ ] and u j = 

[
u j 

−, u j 
+ ], u i 

− < u i 
+ or 

u j 
− < u j 

+ . The similarity degree of the interval value u i relative to 

the interval value u j is defined as follows: 

S i j = 1 − 1 

2 

∗ | u i 
+ − u j 

+ | + | u i 
− − u j 

−| 
max ( u i 

+ , u j 
+ ) − min ( u i 

−, u j 
−) 

(4) 

As for the relation between intervals [ a −, a + ] and [ b −, b + ] , 
there are six types of situations, shown in Fig. 1 . Hence, according 

to Definition 3 , we can compute the similarity degree S easily as 

follows: 

(a) a − < a + ≤ b − < b + and S = 1 − 1 
2 ∗ ( b −−a −)+( b + −a + ) 

b + −a −
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