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A B S T R A C T

A slowdown in global agricultural expansion, spurred by land limitations, improved technologies, and demand
for specific crops has led to increased agricultural intensification. While agricultural expansion has been heavily
scrutinized, less attention has been paid to changes within cropland systems. Here we present a method to detect
individual cropland field parcels from temporal Landsat imagery to improve cropland estimates and better depict
the scale of farming across South America. The methods consist of multi-spectral image edge extraction and
multi-scale contrast limited adaptive histogram equalization (CLAHE) and adaptive thresholding using Landsat
Surface Reflectance Climate Data Record (CDR) products. We tested our methods across a South American region
with approximately 82% of the 2000/2001 total cropland area, using a Landsat time series composite with a
January 1, 2000 to August 1, 2001 timeframe. A thematic accuracy assessment revealed an overall cropland f-
score of 91%, while an object-based assessment of 5480 fields showed low geometric errors. The results illustrate
that Landsat time series can be used to accurately estimate cropland in South America, and the low geometric
errors of the per-parcel estimates highlight the applicability of the proposed methods over a large area. Our
approach offers a new technique of analyzing agricultural changes across a broad geographic scale. By using
multi-temporal Landsat imagery with a semi-automatic field extraction approach, we can monitor within-agri-
cultural changes at a high degree of accuracy, and advance our understanding of regional agricultural expansion
and intensification dynamics across South America.

1. Introduction

In the latter half of the 20th century, growing food demand was met
through intensification of agricultural production, while global agricultural
expansion slowed down (Tilman et al., 2001). Farmers raised productivity
through increased application of inputs such as fertilizers, herbicides, and
pesticides, and by adopting modern plant varieties, mechanization, and new
farming techniques (Deininger and Byerlee, 2012; Matson et al., 1997).
While reduced land clearing for agriculture (Gibbs et al., 2010, 2015;
Graesser et al., 2015) can contribute greatly to biodiversity preservation and
habitat conservation (Foley et al., 2005), intensification can be en-
vironmentally harmful when inputs such as nitrogen and phosphorous are
mismanaged (Barrett et al., 2001; Tilman et al., 2001, 2002). Thus, there is
a critical need for agricultural monitoring to assess the environmental im-
plications of agro-industrialization and intensification.

Timely and consistent monitoring of agricultural intensification is
challenging because the availability of data that describe intensification
over large areas is limited. For example, agricultural censuses provide
information about farm size, machinery, and fertilizers, but these data
lack the spatial and temporal resolution needed to consistently monitor
detailed changes over large areas. Remote sensing, however, offers a
unique solution to this problem. Remote sensing provides the capability
to detect indicators of intensification, namely indicators of physical
agricultural characteristics. For example, agricultural morphology, i.e.,
field shape or size, is observable with moderate- to high-resolution
sensors, and would be an invaluable piece of information for multiple
reasons. Field size is important in order to understand farm manage-
ment practices such as crop diversity and rotation, and to assess tra-
deoffs between agricultural scale and efficiency, biodiversity mon-
itoring, landscape fragmentation, and ecological diversity (Barrett
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et al., 2001; Fahrig et al., 2015). Field size is also complementary to
farm size. For example, if a farmer's capacity to expand land holdings is
limited, farm size remains unchanged. But a farmer can still alter the
landscape through changes in management such as field enlargement.
Therefore, field size can provide important information about the pla-
net's rapidly changing agricultural systems that would not otherwise be
captured with farm size data from agricultural censuses and surveys.
Fortunately, Landsat, one of the remote sensing community's long-
standing pillars of global change monitoring, offers the geographic and
temporal coverage as well as the spatial resolution necessary to detect
cropland field parcels over large areas. The challenge is to exploit this
vast resource and design practical and robust methods to accurately
depict field parcels, which will complement growing information about
agricultural expansion.

While the remote sensing community has remarkably improved the
capacity to monitor extensive land cover changes, particularly into
forests (Hansen et al., 2008; Hansen and Loveland, 2012; Potapov et al.,
2012), less has been accomplished to remotely depict land use in-
tensification such as field size changes. Part of the challenge is that
traditional per-pixel based methods are not suitable for understanding
landscape shape and context. Instead, image processing methods are
essential to solving this problem. For example, contextual information,
often referred to as image texture, can provide useful information about
the structure and morphology of landscape context. This approach was
used in combination with linear regression to estimate field sizes at a
continuous scale in Eastern Europe (Kuemmerle et al., 2009). Though
computationally simple and shown to produce accurate estimates, the
method restricts the data output to large area units rather than in-
dividual field parcels. Similar to this work, European-wide field
size estimates were conducted from interpolation of survey data
(Kuemmerle et al., 2013). A very different approach from the previous
studies made use of crowdsourcing to rapidly produce many field size
samples from satellite imagery (Fritz et al., 2015). By doing so, the
authors produced, to our knowledge, the first and only global estimate
of field sizes, offering a first look at the major global patterns on the
scale of food production. However, the methodology does not provide
wall-to-wall estimates, instead interpolating between crowdsourced
samples. Although somewhat expected in global studies, the result is an
over-generalization of field sizes because of categorical field size classes
and assumptions about field size patterns over interpolated space. Still,
Argentina—particularly scrutinized because of our paper's regional fo-
cus—is a case in point of the limitations of this approach. Only rem-
nants of small fields (although ‘small’ is not explicitly defined) were
estimated, when in fact many small fields exist throughout the country,
as we shall show later.

The limitations (reliance on third-party data, coarse field estimates)
of the approaches above warrant a solution that can produce wall-to-
wall, large-scale estimates of individual fields. Yan and Roy (2014)
developed a novel procedure to detect individual parcels from multi-
temporal Landsat imagery by combining image-processing techniques
such as image morphology and segmentation. The authors employed
temporal Web-enabled Landsat Data (WELD) (Roy et al., 2010) to ex-
tract fields over a five-year period in the United States and presented
the first large-scale estimate of individual fields. More recently, the
authors reduced the timeframe to one year, refined the methods, and
applied their algorithm to the contiguous US (Yan and Roy, 2016).
Their approach, utilizing a combination of image processing methods,
is more promising than previous approaches. Another European-wide
study illustrated the potential for ‘field patch’ segmentation from sa-
tellite imagery (Weissteiner et al., 2016). However, whereas the esti-
mates of Yan and Roy (2016) were kept at the field level, Weissteiner
et al. (2016) aggregated their data to a much coarser scale than in-
dividual fields.

In this study, we present an image processing method to detect in-
dividual field parcels from multi-temporal Landsat imagery, with some
key differences from the Yan and Roy studies, and with application over

different agricultural landscapes across much of South America. South
America's agricultural landscape has changed rapidly over the past
several decades (Berduegué and Fuentealba, 2011; Dros, 2004; FAO,
2015; Graesser et al., 2015; Martinelli, 2012). Better estimates of
cropland and data that describe the nature of the agricultural changes
are needed in order to accurately monitor and understand the con-
sequences of these rapid changes. Field-size data, in particular, would
greatly enhance the capacity to monitor the scale of these changes. This
study addresses two questions: 1) Is Landsat a reliable sensor for
cropland observations? and 2) Can individual field parcels be detected
at the continental scale from multi-temporal Landsat imagery over a
broad range of crop types and field configurations? To characterize
cropland, we used all available Landsat images over a 1.5-year period,
from 2000 to 2001. We then estimated cropland at a parcel level using
multi-temporal Landsat imagery and contemporary edge-based
methods, and tested the robustness of our methods over a large and
complex agricultural region of South America.

2. Data and study area

2.1. Study area

We identified individual crop field parcels across a selected region
of South America, broadly defined as cropland south of the Amazon
River and north of Patagonia (Fig. 1). The test region was chosen from
Landsat scenes that intersected selected world ecoregions (Olson et al.,
2001) in order to include a wide range of crop types and landscapes.
This selected region contained approximately 82% of the 2001 South
American cropland area (Graesser et al., 2015). Argentina and Brazil
comprise the majority of the agricultural land within the study region.

Fig. 1. South America test region for semi-automatic crop-field extraction. The study area
(shown in black outline) consists of Landsat scenes that intersect selected ecoregions. For
field parcel validation, 10 km × 10 km grids were generated to cover the test region. The
grids were then restricted to those with≥10% cropland area (shown in cyan). Finally, we
randomly sampled 1000 grids (shown in red) from this ≥10% cropland grid to use for
crop field parcel validation. Inset A illustrates a larger-scale view of the sample grids. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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