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Although different satisfiability decision procedures can be combined by algorithms such 
as those of Nelson–Oppen or Shostak, current tools typically can only support a finite 
number of theories to use in such combinations. To make SMT solving more widely 
applicable one needs theory-generic satisfiability algorithms allowing a potentially infinite 
number of decidable theories to be user-definable, instead of needing to be built in by 
tool implementers. This work studies how folding variant narrowing, a generic unification 
algorithm that offers good extensibility in unification theory, can be extended to a generic 
variant-based satisfiability algorithm for the initial algebras of user-specified input theories 
when such theories satisfy Comon and Delaune’s finite variant property (FVP) and some 
extra conditions. Several, increasingly larger infinite classes of theories whose initial 
algebras enjoy decidable variant-based satisfiability are identified and illustrated with 
examples. A method based on descent maps to bring other theories into these classes and 
to improve the generic algorithm’s efficiency is also proposed.

© 2017 Published by Elsevier B.V.

1. Introduction

The use of decision procedures for theories axiomatizing data structures and functions commonly occurring in software 
and hardware systems is currently one of the most effective methods at the heart of state-of-the-art theorem provers and 
model checkers. It offers the promise, and often even the reality, of scaling up such verification efforts to handle large 
systems used in industrial practice. In the area of decision procedures two important phases stand out. The first is the 
discovery in the late 70’s and early 80’s of combination methods by Nelson and Oppen [80] and Shostak [85] to achieve 
satisfiability in combinations of decidable theories. The second is the marriage of SAT-solving technology with satisfiability 
procedures for decidable theories, an approach pioneered independently by a number of different groups [5,47,7,14,79,48]
and distilled in the influential DPLL(T) architecture [82]. This approach has been key to the success of SMT solving, as 
witnessed by a vast literature on the subject.

However, one important challenge is the lack of extensibility of current SMT tools. This may seem somewhat paradox-
ical to say, since obviously the Nelson–Oppen (NO) combination method [80,83] offers unlimited extensibility by theory 
combinations under some conditions on the combined theories. This is true enough, but:

1. One needs to have algorithms and implementations for each of the theories supported by the SMT solver, which requires 
a non-trivial effort and in any case limits at any given time each SMT solver to support a finite (and in practice not very 
large) library of theories that it can handle.
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2. What we need are theory-generic—i.e., not for a single theory, but for an infinite class of theories—satisfiability decision 
procedures, so that the input theories are easily user-definable. In this way, an SMT solver’s repertoire of individual 
decidable theories becomes potentially infinite and easily specifiable by the tool’s users, as opposed to its implementers.

Achieving extensibility in this more ambitious sense can have large payoffs for SMT solving technology, because it can 
widely extend both its scope and its effectiveness. In formal verification practice this would allow automating larger frag-
ments of the verification effort, both in theorem proving and in model checking, and therefore scaling up to effectively 
handle larger problems.

This paper is all about making SMT solving extensible in the just-mentioned sense by what I call variant-based satisfi-
ability methods. The best way for me to explain the key ideas is to place them in the context of a recent sea change in 
unification theory that has been quietly taking place thanks to variant-based unification [43,44], inspired by the Comon and 
Delaune notion of variant [32].

Unification theory is not just a neighboring area of SMT solving, but actually a subfield. Specifically, the subfield obtained 
by: (i) considering theories of the form th(T�/E (X)), associated to equational theories (�, E), where th(T�/E (X)) denotes 
the theory of the free (�, E)-algebra T�/E(X) on countably many variables X , and (ii) restricting ourselves to positive
quantifier-free (QF) formulas of the form1 ϕ ≡∨

i

∧
Gi , with each 

∧
Gi a conjunction of equations. A finitary E-unification 

algorithm then gives us a decision procedure for satisfiability of such formulas ϕ not only in the free (�, E)-algebra T�/E (X), 
but also in the initial (�, E)-algebra T�/E when all sorts of T�/E are non-empty.

Unification theory is not only a subfield of SMT solving but what might be called a microcosm, where many problems 
and challenges of SMT solving already show up, including the extensibility problem. For example, the Nelson–Oppen (NO) 
combination algorithm [80,83] is mirrored by algorithms for combining unification procedures, such as those of Baader and 
Schulz [8] and Boudet [20] (see [10] for a unified treatment of both NO and the Baader–Schulz algorithms). Also, as for SMT 
solving, extensibility is a problem for the exact same reasons: although combination methods exist, E-unification algorithms 
require substantial implementation efforts and a tool can only support so many of them.

One important advantage of unification theory is that it has had for a long time generic E-unification semi-algorithms, 
namely, narrowing-based [89,46,62,63] and transformation-based [49,90] ones. But one important drawback of these semi-
algorithms is that, since E-unification for arbitrary E is undecidable, in general they only provide a semi-decision procedure, 
which is useless for deciding unifiability, i.e., satisfiability of formulas ϕ ≡∨

i

∧
Gi in both the free (�, E)-algebra T�/E (X)

and the initial (�, E)-algebra T�/E , unless they can be proved terminating for a given equational theory E . For theories E
whose equations can be oriented as convergent rewrite rules R , some termination results for narrowing-based unification, 
mostly centered on special input theories for the basic narrowing strategy [62], do exist for some quite restrictive classes 
of rules R (see [1,2], and references there, for a comprehensive and up-to-date treatment). Instead, the more general case 
of termination for narrowing-based unification for equational theories E � B for which the equations E can be oriented as 
convergent rules R modulo axioms B having a finitary B-unification algorithm, has been a real terra incognita until very 
recently, because negative results, like the impossibility of using basic narrowing when B is a set of associative-commutative 
(AC) axioms [32], seemed to dash any hopes not just of termination, but even of efficient implementation. Many of these 
limitations have now disappeared thanks to the folding variant narrowing algorithm [43,44]. Let me summarize the current 
state of the art after [44]:

1. When B has a finitary unification algorithm, folding variant narrowing with convergent oriented equations E modulo B
will terminate on any input term (including unification problems expressed in an extended signature) iff E � B has the 
finite variant property2 (FVP) in the sharpened sense of Definition 5.

2. No other complete narrowing strategy can terminate more often than folding variant narrowing; in particular, basic 
narrowing (when applicable, e.g., B = ∅) terminates strictly less often.

3. FVP is a semi-decidable property, and when it actually holds can be easily checked by folding variant narrowing, as-
suming convergence of the oriented equations E modulo B and a finitary B-unification algorithm [24].

4. Folding variant narrowing and variant-based unification for theories E � B , where B can be any combination of associa-
tivity, commutativity and identity axioms are well supported by Maude [26] in its latest 2.7 version [37].

There are by now papers, e.g., [32,42,41], many cryptographic protocol specifications, e.g., [42,96,56,23,84], and several 
verification tools, e.g., [42,23,84], demonstrating that FVP equational theories are omni-present in cryptographic protocol 
verification and that variant-based unification and narrowing are very general and effective formal reasoning methods to 
verify such protocols. In this paper I give many examples showing that, in a similar way, QF satisfiability in initial algebras 
of FVP theories is decidable under reasonable conditions.

The key question addressed in this paper should now be obvious: can the good properties of variant-based unification as 
a theory-generic, finitary E� B-unification algorithm for FVP theories be extended to a, likewise theory-generic, variant-based 

1 Here and anywhere else the symbol ≡ will be used to denote syntactic equality.
2 u is an E, B-variant of a term t in the Comon–Delaune sense [32] (see Definition 5 for a sharper definition) if u is the E, B-canonical form of a 

substitution instance, tθ , of t . Therefore, the variants of t are intuitively the “irreducible patterns” to which t can be symbolically evaluated by the oriented 
equations E modulo B . E � B has the finite variant property (FVP) if any t has a finite set of most general E, B-variants.
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