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A B S T R A C T

Error avoidance in high-precision manufacturing processes becomes more important for numerous
state-of-the-art technologies. Selective laser melting is one of these technologies offering large potentials
in the production of complex and flexible metal products. As the technology is relatively new, it is
vulnerable for errors, given that the process parameters are not measured yet. A novel multilevel control
concept, incorporating several sensors, has the potential to reduce errors significantly. For inner cascade
control, the laser power will be adjusted by measurements with an intensity sensor for wavelengths in
the visible range. This sensor is integrated into the optical path of the laser beam. An adapted self-
learning strategy supports the stability of the process by updating the parameters of the used
multidimensional model in order to attenuate environmental influences or shifts within the process. This
work presents the concept of the control approach, first measurement results and the required relations
between measurement, process and control parameters.

© 2017 CIRP.

Introduction

Selective laser melting (SLM) is an additive manufacturing (AM)
process that is well suited for the production of parts with complex
geometries by melting powder material layer-wise. The melting
process is generated by a laser beam, which is guided through a
scanning unit to the build platform. After a layer is finished, the
build platform with the part and powder will be lowered and a new
powder layer will be coated in order to process the next layer of the
product. The rising technology has several advantages: on the one
hand, it does not need tools or forms for production, and on the
other hand, it is able to produce complex freeform parts. The
machines for selective laser melting do not exhibit a closed-loop
control strategy, as yet.

In the AM process, there are some external influences that affect
the process parameters, which are mainly the melt pool size and
the material temperature in the melt pool. Their changes also lead
to an impact on the quality parameters, which comprise the
dimensional tolerances, density, tensile strength, roughness, or
residual stresses [1]. Without measuring any process parameters,

the external influences have a parasitic effect on the stability of the
process. Therefore, implementing a closed-loop control concept
offers potential to improve the product quality. Directly measuring
the quality parameters is not possible. Thus, intelligent control
concepts in a multidimensional input space are promising. Those
quality control approaches have been successfully demonstrated
for other processes in the field of turning processes [2] and the heat
treatment of bearing rings [3].

In the past, several sensor concepts for the SLM process have
been examined: An in-situ measurement of the process between
each layer has been performed with cameras that cover the whole
build platform. These cameras operated in the visible [4] and the
infrared spectrum [5]. The sensors are able to detect process
deviations on a global scale before or after the laser material
processing takes place. Attempts of an in-process measurement of
the material processing have been carried out by means of
pyrometers [6], photo diodes and high speed cameras mounted
coaxially to the processing beam [7]. Based on a photo diode, a PI-
controller for the AM process was tested successfully [8].

Within the EU founded project MEGaFiT [9], a novel multilayer
control concept was developed for the AM process, incorporating a
thermal camera, a colour sensor and a topography sensor. The
linking of the measured data to the quality parameters is the major
challenge of the adaptive control concept. The process data can be
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applied within different model types and a machine learning
strategy [10]. To be able to implement also complex control
approaches with a number of input parameters in the AM process,
a combination of intelligent self-learning methods from the field of
artificial intelligence and fast process controller hardware were
developed and tested.

Additive manufacturing setup

The pilot test system for the AM control is based on an SLM
machine of the type EOS M250. Main components such as the laser
beam source and the focus positioning system have been replaced. A
Rofin 1 kW fibre laser is used for material processing. Its beam is
focused and deflected by Scanlab components. To observe the
behaviourof themelt pool,acoloursensor is integratedcoaxially into
the optical setup. Within the observed area of approximately 7 mm
around the melt pool, the visible electromagnetic radiation is being
detected. Besides a coating for the processing wavelength lp = 1070
nm, the scanner mirror possesses an additional coating for the
sensor wavelengths around ls = 880 nm. A dichroic mirror deflects
the visible content to the true colour RGB sensor. The RGB sensor of
the type Sensor Instruments SPECTRO-3-FIO-ANA measures
intensities within three pre-defined spectral regions, resulting in
red, green and blue colour intensities. With a sampling frequency of
up to 90 kHz and analogue outputs, the sensor is well suited for the
high dynamic process with scan speeds in the order of 1000 mm/s.
Furthermore, an in-process depth meter (IDM) based on low
coherence interferometry is integrated into the optical path of the
laser and an infrared (IR) camera is directed to the weld plume off-
axis (Fig. 1).

Control strategy

The additive manufacturing process is divided into three
control levels, which are arranged in three cascades (Fig. 2). The
inner cascade 1 provides a real-time control loop of the laser power
based on the melt pool properties. For that task, metamodels are
used to optimise the control behaviour of a conventional single-
input controller. Metamodels combine the advantages of large
simulation-based models with multiple input parameters (e.g.
finite element models) and simplified conventional control
structures such as proportional-integral-derivative (PID) control-
lers. The input provided to this melt pool control consists of sensor

data, a set-point value for each desired melt pool property and an
estimation of the appropriate laser power that needs to be applied.
The considered sensor types are assumed to deliver information on
the characteristics of the melt pool. The RGB signal is expected to
correlate to the melt pool size and temperature. Distances can be
measured with the IDM sensor, which might reveal accidental
transitions to the deep penetration welding mode [11].

The size of the melt pool, that results from an exposure,
depends on the heat transfer from the laser spot to surrounding
material and thus on the designed geometry of the work piece.
While state-of-the-art AM technology typically distinguishes only
between a few types of regions in a layer to be exposed, such as
contour and core regions, a new method of geometry characteri-
sation is introduced. Based on the geometry of the digital part
model, an index will be generated for each scan vector during the
data pre-processing that correlates with the expected local heat
conduction. This proximity index is used as additional input of the
cascade 1 controller.

The intermediate in-situ control cascade 2 determines the order
of exposure during a single layer material processing. Depending
on the temperature distribution captured with the thermography
camera, a certain strategy is to be developed that aims at reduced
temperature gradients. Temperature gradients within the produc-
tion process cause residual stresses and deformations of the parts
that eventually may lead to defects such as cracks and damages to
the coating unit.

Fig. 1. Integration of the sensors into the optical setup of the AM pilot machine (For interpretation of the references to colour in the text, the reader is referred to the web
version of this article.).

Fig. 2. Control cascades of the additive manufacturing process.
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