Accepted Manuscript

A random walk model to evaluate autism

PII: S0378-4371(17)31156-1
DOI: https://doi.org/10.1016/j.physa.2017.11.090
Reference: PHYSA 18858

To appear in: Physica A

Received date: 14 June 2017
Revised date: 16 October 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A random walk model to evaluate autism

Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte,
Natal, RN, 59072-970, Brazil

Abstract
A common test administered during neurological examination in children is the
analysis of their social communication and interaction across multiple contexts,
including repetitive patterns of behavior. Poor performance may be associated
with neurological conditions characterized by impairments in executive function,
such as the so-called pervasive developmental disorders (PDDs), a particular
condition of the autism spectrum disorders (ASDs). Inspired in these diagnosis
tools, mainly those related to repetitive movements and behaviors, we studied
here how the diffusion regimes of two discrete-time random walkers, mimicking
the lack of social interaction and restricted interests developed for children with
PDDs, are affected. Our model, which is based on the so-called elephant random
walk (ERW) approach, consider that one of the random walker can learn and imitate
the microscopic behavior of the other with probability \(f \) (1 – \(f \) otherwise). The diffusion regimes, measured by the Hurst exponent \(H \), is then
obtained, whose changes may indicate a different degree of autism.

Keywords: Autism, Non-Markovian processes, Anomalous diffusion.

1. Introduction

Recently, many random walk models were proposed considering that one of
the walker can remember each decision made at all time of the process history.
A model proposed by Schütz and Trimper, the so-called elephant random walk
(ERW) model, a non-Markovian discrete-time random walk with unbounded
memory, whose random increments at each time step depend on the whole his-
tory of the process [1]. The feature of saving a record for each decision of
the random walk history gives to it the aspect of a non-Markovian process
[2, 3]. Others cases of non-Markovian processes, for example, can be found in
the continuous-time random walk theory (CTRW) introduced by Montroll and
Weiss [4]. The ERW model is able to remember each decision according to

*Corresponding author
Email addresses: tstrsmoura@gmail.com (T.R.S. Moura), umbertofulco@gmail.com
(*U.L. Fulco), eudenilson@gmail.com (and E.L. Albuquerque)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات