
Research paper

The introspective may achieve more: Enhancing existing Geoscientific
models with native-language emulated structural reflection

Xinye Ji, Chaopeng Shen *

Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA

A R T I C L E I N F O

Keywords:
Reflection
Geoscientific modeling
Efficient programming
FORTRAN
Generic data structure
Data I/O

A B S T R A C T

Geoscientific models manage myriad and increasingly complex data structures as trans-disciplinary models are
integrated. They often incur significant redundancy with cross-cutting tasks. Reflection, the ability of a program to
inspect and modify its structure and behavior at runtime, is known as a powerful tool to improve code reusability,
abstraction, and separation of concerns. Reflection is rarely adopted in high-performance Geoscientific models,
especially with Fortran, where it was previously deemed implausible. Practical constraints of language and legacy
often limit us to feather-weight, native-language solutions. We demonstrate the usefulness of a structural-
reflection-emulating, dynamically-linked metaObjects, gd. We show real-world examples including data struc-
ture self-assembly, effortless input/output (IO) and upgrade to parallel I/O, recursive actions and batch opera-
tions. We share gd and a derived module that reproduces MATLAB-like structure in Fortran and Cþþ. We suggest
that both a gd representation and a Fortran-native representation are maintained to access the data, each for
separate purposes. Embracing emulated reflection allows generically-written codes that are highly re-usable
across projects.

1. Current issues

Geoscientific models (GMs), especially process-rich system-dynamics
models (Kelly et al., 2013; Laniak et al., 2013), e.g., Community Land
Model (CLM) (Lawrence et al., 2011), Noah-MP (Niu et al., 2011), iESM
(Collins et al., 2015) and APSIM (Holzworth et al., 2014), manage a large
variety of data. A common practice is to organize data into a hierarchical
data structure. For example, the 4.0 version of the Community Land
Model (CLM) holds data in 5 spatial scales, each possessing multiple
sub-structures (e.g., carbon states, water states), and thousands of inde-
pendent variables, which result from the inclusion of many component
modules, e.g., hydrology, energy, photosynthesis, vegetation phenology,
carbon and nitrogen cycles, which interact and depend on each other.
Providing management support, e.g., input/output (I/O), model save and
restart, memory allocation, module interfacing, and data access for such
complex and a large count of variables can pose a practical challenge.

While environmental modeling frameworks (EMFs) have been pro-
moted for some time, e.g., see (Argent et al., 2009; Holzworth et al.,
2010; Janssen et al., 2011; Rahman et al., 2004; Rizzoli et al., 1998), we
realize their adoption is nonetheless slow and systemic coding issues are
still prevalent with many GMs: cross-cutting concerns, lack of metadata
use, and strong mutual dependency. These issues, which are easily

observed from a spectrum of models, are described in the following.

i There are pandemic, behaviorally similar tasks across multiple com-
ponents of the model, sometimes referred to as “cross-cutting con-
cerns” (Elrad et al., 2001; Kiczales et al., 1997), resulting in different,
case-specific implementations of the same action scattered
throughout the model. For example, the allocation and initialization
of data, checking bounds violation and occurrence of NaN, input/
output, data copy between similar types, save/restart are uniform
operations that cross-cut all modules. However, in many present
models, they need to be hard-coded for each component, resulting in
low code reusability and heavy redundancy.

ii The program does not use metadata, or information that describes the
data objects, such as the object's position in the data hierarchy,
methods, subfields, and their data types, etc. Metadata allows the
program to answer the question “who am I?”: where it is; what it is;
what it has; and what it can do. Without using metadata, a program
cannot enumerate its subfields to traverse the data hierarchy; nor can
it refer to alternative methods.

iii There are strong inter-module dependencies. Module and libraries
updates necessitate program-wide refactoring. This dependence is

* Corresponding author.
E-mail address: cshen@engr.psu.edu (C. Shen).

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier .com/locate/cageo

https://doi.org/10.1016/j.cageo.2017.09.014
Received 23 February 2016; Received in revised form 18 November 2016; Accepted 26 September 2017
Available online 28 September 2017
0098-3004/© 2017 Elsevier Ltd. All rights reserved.

Computers and Geosciences 110 (2018) 32–40

mailto:cshen@engr.psu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2017.09.014&domain=pdf
www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2017.09.014
https://doi.org/10.1016/j.cageo.2017.09.014
https://doi.org/10.1016/j.cageo.2017.09.014


especially troublesome for a highly collaborative project like Com-
munity Earth System Model (CESM).

The purpose of this paper is to promote reflection to Geoscientific
domain scientists. We show that small investment in a simple, Fortran-
native reflection solution can generate a considerable return on code
reusability, efficiency, and clarity. Here our examples include four well-
published models: CLM (Lawrence et al., 2011; Oleson et al., 2013),
PAWS (Shen and Phanikumar, 2010), CHOMBO (Adams et al., 2015),
and CONCEPTS (Langendoen and Alonso, 2008; Langendoen and
Simon, 2008).

2. Native-language-emulated reflection as an efficient solution

Just as the ability to reflect on oneself immensely reshapes our
cognitive abilities, reflection allows the program to possess a level of
intelligence (Smith, 1982). Across various disciplines, reflection has
provided elegant solutions (Forman and Forman, 2004) to above-
mentioned issues, drastically reduced code size, and improved code
readability. The cost reduction in maintenance is also not to be
under-estimated. While long-adopted in computer science, reflection is
not widely adopted in GMs, evidenced by highly redundant hard-coding,
some examples for which are provided in later sections.

Philosophically, reflection is the ability of the program to examine its
own properties and modifying its structure and behavior at runtime
(Forman and Forman, 2004). Reflection can be implemented by inter-
rogating and modifying a first-class metaObject, any object that creates,
describes, or manipulates, objects including itself. For example, in Java,
the base class, Class, is able to be queried for its class, methods, and
metadata of its members. Similar approach powers reflection in Python
and MATLAB. This type of reflection is commonly termed structural
reflection. In contrast, behavioral reflection involves the inspection of
stack or assembly information and modification of a program's own code
(Jacques and Demers, 1996). As our objective is to assist Geoscientific
models with coding efficiency withminimum effort, we limit our scope to
structural reflection. A signature of reflection-oriented code is that string
input arguments replace hard-coded field access or method invocation. A
reflective program receives the request, resolves it during runtime, and
chooses the appropriate behavior. A key ingredient to reflection is met-
adata, with which the program can automatically list all the content and
properties of subfields andmethods, traverse hierarchical tree and reason
if the request can be met. Table 1 compares the behavior of reflective and
non-reflective codes regarding handling several different situations for
an object A.

Why is the adoption of reflection in GMs so slow, given that
reflection-embracing, Java-, C#-based EMFs (references provided pre-
viously), which have been available for 2 decades, are likely to improve
coding efficiency? The main reasons can be cost and habits. Any reflec-
tive solution for GMs must face practical constraints: GMs are predomi-
nantly developed in compiled languages focusing on performance, e.g.,
Fortran and C/Cþþ, which do not have the reflection-supporting meta-
Objects at the language level. As data management only provides auxil-
iary services, many scientists desire simple tools to provide the
functionality, with as little learning curve as possible, and language-
interoperability is often shunned due to various practical reasons.
While EMFs have powerful and flexible features, specialized EMFs may
not apply to many legacy GMs (David et al., 2013), especially
high-performance ones. However, to further promote reflection, there
should also be alternative, native-language solutions that deliver solid
return-on-investment in terms of code length, clarity, and more impor-
tantly reusability. A feather-weight package fully encompassed in a
module in Fortran or a class in Cþþmay much better promote reflection
among domain scientists. A successful solution also needs to support
message passing interface (MPI) and parallel I/O. Dependencies on
external libraries should also be minimized.

3. The generic, dynamically-linked metaObject (gd)

3.1. Implementation of gd

The primary task of data management of GMs is to store, manipulate
and access numerical variables of large sizes and various dimensions.
With compiled languages, reflection must be emulated using a base
metaObjects to store these elemental data types and to provide metadata.
The basic structure of the base metaObject (Fortran version), gd, is pro-
vided in Fig. 1 with explanations (In the attached code: Library). This
module was developed independently as a by-product of hydrologic
modeling in PAWS þ CLM (Shen et al., 2016, 2014, 2013), with appli-
cations in water storage and fluxes (Fang et al., 2016; Niu et al., 2014),
channel-land interactions, biogeochemistry, carbon/nitrogen states,
transport (Niu and Phanikumar, 2015) and scaling (Ji et al., 2015; Pau
et al., 2016; Riley and Shen, 2014), and therefore manages a large
amount of data. gd allows dynamic access, polymorphic (meaning uni-
form interface for different data types) addition and deletion of fields,
procedures (subroutine or function) and sub-structures, permitting
recursive (depth-first) access with a dictionary. It can provide counting of
the total number of fields and number of fields with repetitive names,
check if a field exists (isempty), list fieldnames, and return the type,
dimension, and sizes of the data. While accessing fields, it will check for
the validity (type and dimension) of the output argument and reports
error with helpful diagnostic messages.

3.2. Metadata generation

Because gd is a generic tool, itself does not create metadata, which
needs to be originated through some means. First, realizing it or not, for
most Geoscientific models, the input files already contain metadata
which is generated during pre-processing by more flexible tools. For
example, for the Community Land Model, the input files are the .nc
(NetCDF) files. For PAWS þ CLM, the input file is a .mat or .nc file (Shen
et al., 2014). For CHOMBO, the inputs are text files written in a certain
protocol. For off-the-shelf models like MODFLOW (Markstrom et al.,
2008), or SWAT (Neitsch et al., 2009), input files also describe all

Table 1
Comparison of reflective and non-reflective field access (pseudo code). aHere we demon-
strate retrieval by fieldname. Index-based retrieval is faster. Just an example e, all of the
illustrated subroutines can also be recursive to work on all subfields because there is a
function to check the type of the subfield, which can be sub-structure.

Task described in
normal language

Non-reflective Reflective (getPtr means “get
pointer”)

a Access a field
with the name ‘f1’

A%f1
! Hard-coded

call getPtr(A, ‘f1’,
localPointer)

b Invoke a method
mtd

Call mtd(…) call getPtr(A, ‘mtd’,
localPointer)

c Set all values of
all subfields and
their children to 0

Hard-code all subfields,
which can be hundreds of
lines

DO I ¼ 1,nSubField
Field ¼ A%FieldNames(I) !a

call getPtr (A, Field,
localPointer)
localPointer ¼ 0
ENDDO

d Copy between
same named
fields between
different object
types

A%f1 ¼ B%f1
! Hard-coded for many
fields
! for Cþþ, this can become
complex as there needs to
be access methods for each
member.

DO I ¼ 1,nSubField
Field ¼ A%FieldNames(I) !a

IF ((isReal(A,Field).AND.
isReal(B, Field).AND.
(dimsOf(A,Field).EQ.
dimsOf(B, Field)) THEN
call getPtr(A, Field,
localPointer1) !b

call getPtr(B, Field,
localPointer2)
localPointer1 ¼ localPointer2
ENDIF
ENDDO

a In the code, we achieve field retrieval by index, which is faster and easier.
b In the actual code, there are overloaded operators to allow simpler syntax.

X. Ji, C. Shen Computers and Geosciences 110 (2018) 32–40

33



https://isiarticles.com/article/117858

