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Abstract
In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss
how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity
relaxation time obtained within the diagrammatic approach for the massless λφ4 theory.
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1. Introduction

Over the course of last decades relativistic viscous hydrodynamics has been shown to successfully de-
scribe and explain the behavior of the strongly interacting matter produced in heavy-ion collisions at the
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), see Refs. [1, 2] and refer-
ences therein. In general, any viscous fluid is characterized by a set of transport coefficients. These enter
hydrodynamic equations as parameters and must be obtained from the underlying microscopic theory, either
in quantum field theory or kinetic theory. Many approaches have been developed to study the first-order
transport coefficients [3]-[11] for various systems. There are also some studies on second-order transport
coefficients [12]-[22] but their quantum-field-theoretical determination does not seem to be complete.

We have already undertaken the task to study the shear and the bulk relaxation times consistently from
first principles. The comprehensive analysis is shown in [23] and here only a brief summary is presented.
Using general properties of Green functions and the gravitational Ward identity we first parametrize the
stress-energy correlation functions to find their most general forms. Then Kubo formulas for the relaxation
times are found in the hydrodynamic limits of the corresponding response functions. We also study shear
effects in the massless scalar field theory λφ4 and calculate the shear relaxation time within the real-time
formalism.

2. Equations of viscous hydrodynamics

The behavior of a relativistic system, which is close to thermal equilibrium, can be well described by
the viscous hydrodynamics, which is based on the energy-momentum conservation law

∂μT μν = 0, (1)
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where the energy-momentum tensor takes the form

T μν = εuμuν − Δμν(P + Π) + πμν (2)

with ε being the energy density, P - thermodynamic pressure, uμ are the components of the flow velocity
with the normalization condition uμuμ = 1, Δμν = gμν − uμuν is the projection operator with uμΔμν = 0,
and the Minkowski metric is gμν = (1,−1,−1,−1). The terms Π and πμν are the bulk viscous pressure
and the shear stress tensor, respectively, which have well defined forms in the Navier-Stokes limit. Then
the viscous corrections are characterized by the bulk viscosity ζ and shear viscosity η, respectively. In the
second order formulation of viscous hydrodynamics, the response of medium to the thermodynamic forces
is not instantaneous. The viscous corrections approach their corresponding Navier-Stokes forms within
some characteristic time scales, which are the bulk and shear relaxation times, τΠ and τπ. Consequently, the
viscous corrections are subject to relaxation equations

Π = ΠNS − τΠΠ̇, πμν = π
μν
NS − τππ̇〈μν〉, (3)

where ΠNS and πμνNS are the bulk pressure and the stress tensor in the Navier-Stokes approach, and we used
the notation A〈μν〉 ≡ ΔμναβAαβ where Δμναβ ≡ (ΔμαΔνβ+Δ

μ
βΔ
ν
α−2/3ΔμνΔαβ)/2. We will not consider the non-linear

terms here. For more advanced studies on the hydrodynamic equations see, for example, [24].
In case when there are no other than energy and momentum currents occurring in the system, two

hydrodynamic modes determine its dynamics. They are governed by the following dispersion relations

0 = −ω2τπ − iω + DT k2 (4)

0 = −ω2 + v2
sk2 + iω3(τπ + τΠ) − i

(
4DT

3
+ γ + v2

s(τπ + τΠ)
)
ωk2 (5)

+τπτΠω
4 − τπτΠv2

sω
2k2 − τΠ 4DT

3
ω2k2 − τπγω2k2,

whereω and k are the frequency and wavevector of the modes, DT = η/(ε+P), γ = ζ/(ε+P), and v2
s = ∂P/∂ε

is the speed of sound squared. The dispersion relation (4) governs the propagation of the diffusion mode
which occurs in the direction transverse to the the flow velocity. The sound mode is, in turn, given by the
dispersion relation (5) and it is an effect of the small disturbances propagating longitudinally in the medium.
Both dispersion relations are essential to determine the respective correlation functions of the stress-energy
tensor.

3. Stress-energy correlation functions and Kubo formulas

Since viscous hydrodynamics is a manifestation of the linear response theory, the deviations of different
observables are given in terms of corresponding equilibrium response functions. Therefore, the response
functions carry dynamical information about the system. In general, these functions cannot be calculated
exactly but one is able to parametrize their most general structures for the stress-energy tensor components
using the following arguments. First, the real part of a correlation function is an even function of frequency
and the imaginary part, which directly corresponds to the spectral function, must be an odd function of
frequency. Next, since the stress-energy tensor represents at the same time the conserved currents and also
generators of the space time evolution, its correlation functions must satisfy the gravitational Ward identity
[25]

kα
(
Ḡαβ,μν(k) − gβμ〈T̂αν〉 − gβν〈T̂αμ〉 + gαβ〈T̂ μν〉

)
= 0. (6)

Finally, the low-frequency and long-wavelength limits must be properly incorporated to ensure the correla-
tion functions behave well in these limits.
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