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In this literature, a new method called symplectic waveform relaxation method is for the 

first time proposed to solve Hamiltonian systems. This method is based on waveform re- 

laxation method which makes computation cheaper, and makes use of symplectic method 

to determine its numerical scheme. Under the guidance of the symplectic method, the 

discrete waveform relaxation method elegantly preserves the discrete symplectic form. 

Windowing technique is utilized to accelerate computation. The windowing technique also 

makes it possible to advance in time, window by window. Convergence results of continu- 

ous and discrete symplectic waveform relaxation methods are analyzed. Numerical results 

show that the symplectic waveform relaxation method with the windowing technique pre- 

cisely preserves the Hamiltonian function. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper, we propose a new method to solve the Hamiltonian system ⎧ ⎪ ⎨ 

⎪ ⎩ 

dq 

dt 
= H p , 

dp 

dt 
= −H q , 

(1) 

where p, q ∈ R 

d are d -dimensional functions to be sought, H = H(q, p) is the Hamiltonian function of the system, and H p 

and H q are partial derivatives of the Hamiltonian function H . According to theoretical physics, the Hamiltonian system (1) is 

obtained from the Euler–Lagrangian equation by representing system in phase space [9] . Systems of this kind are seen in 

Mechanics, Klein–Gordon equations [23] , and Korteweg–de Vries (KdV) equations [1] , and so on. p and q are position and 

momentum in generalized coordinates, respectively. 

Each Hamiltonian system holds a conservation law, that is, the Hamiltonian function H ( q , p ) is constant with respect to 

time, i.e., 

dH 

dt 
= H q 

T dq 

dt 
+ H p 

T dp 

dt 
= H q 

T H p + H p 
T (−H q ) = 0 . 
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For each Hamiltonian system, the symplectic form , which is defined as ω = d p ∧ d q, is observed to be a constant. The 

theory of symmetry geometry leads to the corresponding numerical study. This kind of numerical method is called symplectic 

method. The symplectic method is famous for solving Hamiltonian systems with long term stability [8,11] . It focuses on the 

conservation of H ( q , p ) as time evolves, i.e., H(q n +1 , p n +1 ) = H(q n , p n ) , rather than the order of a numerical scheme. This 

idea brings very good numerical outcomes in the calculation of planetary system. 

The well-known symplectic schemes are symplectic Euler method (also known as mid-point Euler method), symplectic 

Runge–Kutta method, symplectic Runge–Kutta–Nyström method [16,17] , symplectic ERKN method [25] , Hamiltonian BVM 

[4] , and so on. Study on Hamiltonian also covers two-stage waveform relaxation method [12] , non-autonomous Hamilto- 

nian systems [13,29] , stochastic Hamiltonian equations [5,7,22] , multisymplectic methods [26] and optimal control problems 

[20] and so on. Furthermore, there is no Runge–Kutta method that is both explicit and symplectic [24] . 

In this paper, we are going to use waveform relaxation (WR) method [15] to solve this system (1) . In order to take 

advantage of the symplectic method, we use the symplectic method as the numerical tool. 

The WR method origins from large scale integrated circuits [19] . It contains two main parts, splitting and iterating. First 

of all, a splitting function has to be chosen to break the big system into small systems. Then there is a loop. We need 

to solve the small systems, exchange information between systems, and recursively doing this procedure until convergent. 

Notable features of the WR method are decoupling and the potential of parallelism. 

We call the combination of symplectic method and waveform relaxation method the symplectic waveform relaxation 

method (symplectic WR method). It is a special case of the WR method that makes use of the symplectic structure as a 

model, and takes advantage of the decoupling feature of WR. On the one hand, the symplectic scheme instructs how to 

discretize the splitting function. On the other hand, the WR method simplifies the computation. 

To solve for a longer time interval, windowing technique [14,18] is introduced. Windowing technique reduces the number 

of iterations and at the same time does not lose the favor of symplectic method. In [14] , the author discussed how big the 

window size would be. Besides, windowing technique is almost naturally parallel according to [21] . 

The paper is organized as follows. In Section 2 , we analyze the symplectic WR method, and give examples of two discrete 

symplectic WR schemes. The conservation laws of Hamiltonian function of both continuous and discrete symplectic WR 

method are analyzed. The windowing technique is used to accelerate symplectic WR method. In Section 3 , numerical results 

are given. Finally, there is a conclusion. 

2. Symplectic waveform relaxation methods for Hamiltonian systems 

In this section, we analyze the symplectic WR method for Hamiltonian system Eq. (1) . Write Eq. (1) as 

˙ z = f (z) , (2) 

where z = (q ; p) is the unknown function on [0, T ] and f (z) = (H p ; −H q ) is the function on the right hand side of Eq. (1) . 

The WR method [15] is a mathematical tool that benefits from an idea of integrated circuits. When a system is large in 

scale, and is hard to compute with current computing resources, we can split it into subsystems that are smaller in scale 

and easier to compute. To archive this, we choose the splitting function F ( z , y ) such that F (z, z) = f (z) , and replace f ( z ) 

with F ( z , y ) in (1) . After choosing a guessed initial value for each subsystem, we compute as if y in F ( z , y ) is the known 

function and z is the unknown, which makes the computation easier. However, this computation cannot be exact because 

the arbitrary choice of the initial value. Then we need an iteration process to ensure its convergence. Often, we write this 

as ˙ z k +1 = F (z k +1 , z k ) , where k = 0 , 1 , . . . is the step counter. 

Regarding the WR method, the splitting function is taken to decouple the system (2) . For the WR method, we have the 

following result. 

Theorem 1 [15] . Suppose the splitting function F ( x , y ) is Lipschitz continuous with respect to x and y in (2) , the WR method is 

convergent. 

2.1. Continuous-time symplectic WR method 

The symplectic WR method is internally the classical WR method. So we know that the Theorem 1 holds. Then we take 

a step further and consider how the Hamiltonian function H behaves with this method. 

Theorem 2. If the symplectic WR method is convergent, and the f in (2) is bounded, then the Hamiltonian function converges to 

a constant. 

Proof. Denote by H 0 the Hamiltonian function of the system. Since the Hamiltonian H 0 is constant, 

dH 0 

dt 
= 0 . 

Denote by H 

k +1 the Hamiltonian function in the (k + 1) th iteration, that is 

H 

k +1 = H(q k +1 , p k +1 ) , 

where q k +1 and p k +1 are position and momentum functions in the (k + 1) th iteration. 
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