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a b s t r a c t 

The relaxation of nonconvex variational problems involving free energy densities W which 

depend on the deformation gradient is frequently characterized by a hierarchy of struc- 

tures at different and well-separated length scales. A wide range of these structures can 

be characterized as the superposition of one-dimensional oscillations on different length 

scales which are referred to as laminates of finite order. During a finite element simula- 

tion, the relaxed energy W 

qc needs to be evaluated in each time step in each Gauss point 

in the triangulation. In this paper, an algorithmic scheme is presented that allows for the 

efficient computation of an approximation of the relaxed energy based on laminates of fi- 

nite order in a large number of points. As an application, the relaxed energy for thin sheets 

of anisotropic nematic elastomers is studied in detail. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The development of the numerical analysis of microstructures in solids emerged some 30 years ago together with the 

evolution of a mathematical theory for fully nonlinear models for phase transformations in solids ( Ball and James, 1987; 

1992; Bhattacharya, 2003; Chipot and Kinderlehrer, 1988 ). In this context, the variational problem is given by an energy 

density W : R 

n ×n → [0 , ∞ ] which depends on the deformation gradient F ∈ R 

n ×n and satisfies the fundamental principle of 

material frame indifference, W (QF ) = W (F ) for all Q ∈ SO( n ), and consists of the minimization of the energy functional 

I[ u ] = 

∫ 
�

W (Du )d x 

in a class A of admissible deformations which is typically given by an affine subset of Sobolev functions satisfying pre- 

scribed Dirichlet boundary conditions. As a consequence of the frame indifference, the ener gy density usually fails to be 

quasiconvex in the sense of Morrey and minimizing sequences tend to develop oscillations on fine scales. In order to obtain 

an effective description, one replaces the variational problem with its relaxation I qc which is given by a variational integral 

with the relaxed energy density W 

qc , 

I qc [ u ] = 

∫ 
�

W 

qc (Du )d x, 
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if W itself satisfies suitable growth conditions, see (2.1) for the definition of W 

qc and Dacorogna (2008) , Müller (1999) and 

Bhattacharya (2003) for more information on relaxation and Conti and Dolzmann (2015) for more general situations. 

This approach requires an explicit computation of the quasiconvex envelope W 

qc . However, due to the complexity of the 

calculations required to derive such an explicit formula, only few examples for quasiconvex envelopes with immediate 

applications to problems in solid mechanics are known, see, e.g., Le Dret and Raoult (1995) , DeSimone and Dolzmann 

(2002) and Conti and Dolzmann (2014) . Examples of a combination of an analytical approximation of the relaxed energy 

with a finite element simulation can be found in Conti et al. (20 02b, 20 07) . Relaxation ideas have been successfully applied 

to a number of different mechanical problems, see for example Ortiz and Repetto (1999) , Miehe et al. (2002) , Carstensen 

et al. (20 08, 20 02) , Lambrecht et al. (2003) , Miehe and Lambrecht (2003) , Miehe et al. (2004) , Kochmann and K.Hackl 

(2011) and Mauthe and Miehe (2015) . 

In view of these difficulties, a fully discrete approach is required for the successful numerical solution of nonconvex 

minimization problems in solid mechanics. Such an approach has to be based on a numerical computation of the relaxed 

variational problem. First results in this direction have been obtained in Bartels (20 04, 20 05) , Bartels et al. (20 04) and 

Dolzmann (1999) . In this contribution we present a new algorithmic approach which is based on the observation that the 

numerical computation of the relaxation is in general coupled to a finite element simulation of an elasticity problem which 

requires the computation of the relaxed energy in many points, typically in the deformation gradients at all Gauss points 

of the underlying finite element discretization. The values of the local deformation gradient at these points are typically 

strongly correlated. In this situation, two strategies can be followed. One approach is related to on-the-fly computations 

within the concurrent multiscale framework pioneered in Aubry and Ortiz (2003) , the other approach is based on a 

systematic exploitation of continuity properties of minimizing laminates, which is frequently observed, as proposed in this 

article. We refer to Section 2 for a detailed discussion of this approach and its numerical realization. A summary of these 

results was presented in Conti and Dolzmann (2017) . 

We also illustrate the effectiveness of our algorithm via an application to two model cases of physical interest. The 

first one is the two-well problem, coming from the study of martensitic phase transitions ( Ball and James, 1992; Chipot 

and Kinderlehrer, 1988 ). The application of our algorithm has permitted to identify the specific lamination directions and 

to obtain an explicit formula for the relaxation of the energy, given in (3.1) below. A rigorous proof of the validity of 

the explicit formula has meanwhile been obtained and was published elsewhere ( Conti and Dolzmann, 2014 ). We then 

turn to nematic elastomers, a material whose peculiar properties generated a large interest in the physics and mechanics 

communities in the last decades (see the discussion of the literature in Section 4 ). We show that our algorithm is able 

to provide a detailed characterization of the (previously unknown) mesoscopic phase diagram. We also show, via the 

computation of a stress-strain diagram for a uniaxial tension experiment, how relaxation affects the macroscopic properties 

of the material (see Section 4 for details). 

The paper is organized as follows. In Section 2 we recall the mathematical theory underlying our numerical approach and 

present the algorithm in detail. Aspects of its implementation and its validation are presented in Section 3 . Finally Section 

4 contains an in-depth analysis of an anisotropic model for sheets of nematic elastomers. The appendix contains the math- 

ematical proof of Proposition 4.3 , which states that for membrane problems we can deal with relaxation in 2 × 2 matrices. 

Notation. We say that W is rank-one convex if W is convex along all rank-one lines, i.e., for all F ∈ R 

n ×n and R ∈ R 

n ×n 

with rank R = 1 the functions t �→ W (F + tR ) are convex. Moreover W is polyconvex, if there exists a convex function g 

which depends on the vector M ( F ) of all minors of F such that W (F ) = g(M(F )) . For n = 2 this requires the existence of 

a convex function g : R 

5 → R with W (F ) = g(F , det F ) and for n = 3 the existence of a convex function g : R 

19 → R with 

W (F ) = g(F , cof F , det F ) where cof F denotes the (3 × 3)-matrix of all quadratic subdeterminants of F . 

2. Algorithm 

As discussed in the introduction, the concept of a fully discrete approach to the numerical simulation of multi-scale 

problems requires an algorithmic approach to the computation of the relaxed energy W 

qc . At the beginning of a numerical 

simulation for the relaxed variational problem, no information about the relaxed energy is available. Every evaluation of an 

approximation of W 

qc ( F ) requires computational work. Typically this is done reducing to a finite-dimensional minimization 

problem which is then solved by locally optimizing the parameters with some variant of a steepest descent procedure. 

These local optimization algorithms require initial conditions. If no information is available, the initial conditions can be 

deterministic, e.g., assuming that no microstructure is needed, or random, e.g., generating some microstructure based 

on a random number generator. One key ingredient in our algorithm is that every computation of the relaxed energy 

provides information about the relaxed energy and the corresponding microstructure, and that this information should be 

saved and accumulated during the execution of the full simulation. The approach proposed in this article is to store the 

microstructures that are computed in a data structure and to construct from this information well adapted initial conditions 

for later computations of the relaxed energy. 

In the following we assume that the free energy density W is defined on R 

m ×n , the case m = n being the relevant case 

for applications in elasticity. 
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