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A parallelizable direct solution of integral equation methods is proposed for electromagnetic scattering analysis 

in low to intermediate frequency regime. There are mainly two parts of the proposed direct solution: forward 

decomposition and backward substitution. For the forward decomposition, the dense impedance matrix is de- 

composed of the product of several block diagonal matrices implicitly, which is shown to be O ( N log 2 N ) for both 

memory and CPU time cost. The final solutions are obtained with several matrix vector products (MVPs) in the 

part of backward substitution with O ( N log 2 N ) complexity as well. Both forward decomposition and backward 

substitution can be parallelized because of the group independence. Furthermore, an effective preconditioner 

with a reasonable selection criterion of the diagonal blocks region is proposed to accelerate the convergence of 

the iterative solver. The proposed solution is independent of the Green’s function, and it is suitable for all the 

integral equation methods. Without loss of generality, the solution is proposed to solve the electric field inte- 

gral equation (EFIE) in this work. Numerical tests demonstrate the effectiveness of the proposed solution for the 

electromagnetic analysis, especially for multiscale structures. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The integral equation methods [1] are popularly applied in the area 

of electromagnetic analysis. Many solution methods [4–17,26–28] have 

been proposed to obtain the required solutions of integral equations. 

These methods are mainly divided into two kinds, the iterative solution 

method and the direct solution method. 

The iterative solution methods such as the generalized minimum 

residual (GMRES) [2] or the bi-conjugate gradient (BiCG) [3] need one 

or more MVPs at each iteration. The computational complexity of MVP 

can be reduced by many fast algorithms, such as multilevel fast mul- 

tipole algorithm (MLFMA) [4 , 5] , the matrix decomposition algorithm 

(MDA) [6–8] , adaptive cross approximation (ACA) method [9 , 10] and 

nested equivalent source approximation (NESA) method [11] , etc. How- 

ever, the computational efficiency of the iterative methods is restricted 

by the number of iterations which is unpredictable, especially for the 

multiscale problems. To accelerate the convergence of the iteration 

solvers, many preconditioning techniques [22–28] have been proposed 

in recent decades. However, the iterative solution needs to be resumed 

for each right-hand-side (RHS) vectors for the multiple excitations prob- 

lems (monostatic RCS problems), which is time-consuming. 

In order to overcome the unpredictable problem of the iteration num- 

ber arising from iterative solver, the direct solution methods have been 
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studied in recent years. The impedance matrix can be inversed by the 

direct solution method. The solution of the matrix equations can be ob- 

tained with a simple backward substitution for given excitation vec- 

tors. However, The conventional direct solution method like the Gaus- 

sian elimination or LU decomposition cannot be effective for electrical- 

large electromagnetic problems, which is O ( N 

3 ) ( N is the number of 

unknowns) computational complexity. Therefore, many fast direct solu- 

tion methods [12–17] have been proposed during recent several years. 

The compressed block decomposition (CBD) [12] and multiscale com- 

pressed block decomposition (MSCBD) [13] based on a block-wise sub- 

division of the impedance matrix of EFIE are proposed for accelerated 

direct solution of electromagnetic analysis with computation complexity 

of O ( N 

2 ) for computation cost and O ( N 

1.5 ) for memory. The H 

2 -matrix- 

based solver [14] is developed to solve the dense system of linear equa- 

tions for static capacitance extraction problems with linear complexity. 

In [15] , a fast algorithm for the direct solution of the integral equation 

method is presented for essentially 2-D convex scatterers using multi- 

level non-uniform grids. And in [16] , the multilevel matrix decomposi- 

tion algorithm (MLMDA) is shown to compress LU-decomposed inverse 

integral operators for analyzing 2-D TM z scattering phenomena. What’s 

more, the skeletonization process and Huygens ’ surface are utilized in 

[17] for a fast direct matrix solver for surface integral equation methods 

for electromagnetic scattering problems. These state of the art methods 
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show highlighted effectiveness in the solution of integral equation meth- 

ods for their corresponding electromagnetic problems. However, all the 

above methods are implemented in a sequential fashion because of re- 

cursive operations. 

In this paper, a novel parallelizable direct solution is proposed with 

O ( N log 2 N ) complexity for electromagnetic analysis in low to intermedi- 

ate frequency regime. It is directly inspired by the work in [18] where 

a direct solver is introduced for hierarchical systems. Then [20] applied 

this method to solve the matrix equation of characteristic basis function 

method. The main novel contributions of our work in comparison to pre- 

vious work in [18] and [20] consist of three points. Firstly, a novel paral- 

lelizable direct solution of integral equation methods with high parallel 

efficiency is proposed for electromagnetic analysis. There are mainly 

two parts of the proposed direct solution: forward decomposition and 

backward substitution. Both the forward decomposition and backward 

substitution with O ( N log 2 N ) complexity are carried out independently 

to each group at the same level. Therefore, they can be friendly accel- 

erated with parallelization. The detail of the parallel implementation 

with high parallel efficiency is proposed in Section 2.4 . Secondly, the 

proposed solution has an advantage on multiscale problems. The RWG 

basis function [21] is used to discretize the multiscale models without 

any approximate reduction, which can fit the shape of the multiscale 

structure precisely. Benefit from the kernel independent property of the 

proposed solution, an adaptive grouping technique based on both the ge- 

ometric position and unknowns is proposed to ensure the load balance 

in each group. The level number of the binary tree is just determined by 

the number of unknowns in each group at the finest level, which is set 

to be no greater than a threshold. Thirdly, an effective preconditioner 

for the iterative solver based on the proposed direct solution is proposed 

with a selection criterion, which approximates the impedance matrix in 

an inexpensive way. The selection criterion will be introduced in the 

Section 2.5 in detail. 

2. Theory and implementation 

The EFIE formulation for electromagnetic analysis is derived as 

𝑗 𝜔𝜇 ∫𝑆 
[ 
𝐉 ( 𝐫 ′) + 

1 
𝑘 2 

∇(∇ · 𝐉 ( 𝐫 ′)) 
] 
𝐺 

(
𝐫 , 𝐫 ′

)
𝑑 𝑆 = 𝐄 

𝑖𝑛𝑐 ( 𝐫 ) (1) 

Where J is the induced current on the surface of the object, E 

inc is 

the incident electric field, r and r ′ is the location of the field point and 

source point, respectively. G ( r, r ′ ) is the Green’s function for the electric 

field due to current sources and is given by 

𝐺( 𝐫 , 𝐫 ′) = 

𝑒 − 𝑗 𝑘 |𝐫 − 𝐫 ′|
4 𝜋|𝐫 − 𝐫 ′| (2) 

To solve the EFIE in Eq. (1) , the induced current J is discretized with 

the RWG basis functions f ( r ) [21] and the Eq. (1) can be converted into 

a matrix equation A • X = b with the Galerkin method. The element of 

the impedance matrix A and the right side vector b are expressed as 

𝐴 𝑚𝑛 = 𝑗 𝜔𝜇 ∫𝑆 𝑚 ∫𝑆 𝑛 
[ 
𝐟 𝑚 ( 𝐫 ) · 𝐟 𝑛 ( 𝐫 ′) − 

1 
𝑘 2 

∇ · 𝐟 𝑚 ( 𝐫)∇ · 𝐟 𝑛 ( 𝐫) 
] 
𝐺 

(
𝐫 , 𝐫 ′

)
𝑑 𝑆 

′𝑑 𝑆 

(3) 

𝑏 𝑚 = ∫𝑆 𝑚 𝐟 𝑚 ( 𝐫) · 𝐄 

𝑖𝑛𝑐 𝑑𝑆 (4) 

2.1. Adaptive grouping technique 

The impedance matrix A for the EFIE is a dense matrix, which can be 

decomposed into a hierarchical system through the adaptive binary tree 

grouping technique as shown in Fig. 1 . At each level, each parent group 

is divided into two child groups based on both the geometric position 

and unknowns to ensure the load balance in each child group. A thresh- 

old of unknowns in the group at the finest level is set to determine the 
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Fig. 1. The adaptive binary tree grouping structure. 

Fig. 2. The hierarchical system of a two-level matrix for a dense impedance matrix. 

level number of the binary tree. Without loss of generality, a two-level 

hierarchical matrix as an example is shown in Fig. 2 . In the hierarchical 

system, the off-diagonal block matrices 𝐀 

𝑖𝑗 
can be approximated by a 

product of two smaller matrices with matrix decomposition techniques, 

such as ACA [9,10] , ACA-SVD [13] , etc., yielding 

𝐀 𝑖𝑗 = 𝐔 𝑖𝑗 · 𝐕 𝑖𝑗 (5) 

i and j are the group number for the interaction groups. The column size 

of U ij and the row size of V ij are decided by the rank of A ij , which is less 

than the dimension of A ij . Therefore, the impedance matrix A can be 

sparsely expressed as 

𝐀 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

[ 
𝐀 

2 
11 𝐔 

2 
12 𝐕 

2 
12 

𝐔 
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21 𝐕 

2 
21 𝐀 

2 
22 

] 
𝐔 

1 
12 𝐕 

1 
12 

𝐔 

1 
21 𝐕 

1 
21 

[ 
𝐀 

2 
33 𝐔 

2 
34 𝐕 

2 
34 

𝐔 

2 
43 𝐕 

2 
43 𝐀 

2 
44 

] 
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

(6) 

The superscript in Eq. (6) denotes level number. The subscript is the 

group number of the interaction groups at the corresponding level. 

2.2. The algorithm 

For the hierarchical system in Eq. (6) of the impedance matrix, the 

diagonal block matrices can be extracted. Then the diagonal blocks of 

the impedance matrix will change into identity matrices, and all the 

corresponding U matrices should be updated to U ′ with an update oper- 

ation for equality. Therefore, the impedance matrix will be equal to the 

product of several block diagonal matrices, yielding 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
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21 
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33 𝐔 
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𝐔 
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44 

] 
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 𝐃 2 𝐃 1 𝐃 0 

𝐃 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝐀 

2 
11 

𝐀 

2 
22 

𝐀 

2 
33 

𝐀 

2 
44 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 𝐃 1 = 

[ 
𝐀 

1 
11 

𝐀 

1 
22 

] 
, 

𝐃 0 = 𝐀 

0 
11 = 

[ 

𝐈 𝐔 

1 
12 

′𝐕 

1 
12 

𝐔 

1 
21 

′𝐕 

1 
21 𝐈 

] 

(7) 

𝐀 

𝑙 
𝑘,𝑘 

= 

[ 

𝐈 𝐔 

𝑙+1 
2 𝑘 −1 , 2 𝑘 

′𝐕 

𝑙+1 
2 𝑘 −1 , 2 𝑘 

𝐔 

𝑙+1 
2 𝑘, 2 𝑘 −1 

′𝐕 
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] 

(8) 
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