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a b s t r a c t

Graphpebbling is a networkmodel for transporting discrete resources that are consumed in
transit. Deciding whether a given configuration on a particular graph can reach a specified
target is NP-complete, even for diameter two graphs, and deciding whether the pebbling
number has a prescribed upper bound is ΠP

2 -complete. Recently we proved that the
pebbling number of a split graph can be computed in polynomial time. This paper advances
the program of finding other polynomial classes, moving away from the large tree width,
small diameter case (such as split graphs) to small tree width, large diameter, continuing
an investigation on the important subfamily of chordal graphs called k-trees. In particular,
we provide a formula, that can be calculated in polynomial time, for the pebbling number
of any semi-2-tree, falling shy of the result for the full class of 2-trees.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The fundamental question in graph pebbling is whether a given supply (configuration) of discrete pebbles on the vertices
of a connected graph can satisfy a particular set of demands on the vertices. The operation of pebble movement across an
edge {u, v} is called a pebbling step: while two pebbles cross the edge, only one arrives at the opposite end, as the other is
consumed. We write (u, v) to denote a pebbling step from u to v. The most studied scenario involves the demand of one
pebble on a single root vertex r . Satisfying this demand is often referred to as reaching or solving r , and configurations are
consequently called either r-solvable or r-unsolvable.

The size |C | of a configuration C : V → N = {0, 1, . . .} is its total number of pebbles
∑

v∈VC(v). The pebbling number
π (G) = maxr∈Vπ (G, r), where π (G, r) is defined to be the minimum number s so that every configuration of size at least s
is r-solvable. Simple sharp lower bounds like π (G) ≥ n and π (G) ≥ 2diam(G) are easily derived. Graphs satisfying π (G) = n
are called Class 0 and are a topic of much interest. Recent chapters in [13] and [12] include variations on the theme such
as k-pebbling, fractional pebbling, optimal pebbling, cover pebbling, and pebbling thresholds, as well as applications to
combinatorial number theory, combinatorial group theory, and p-adic diophantine equations, and also contain important
open problems in the field.

Computing the pebbling number is difficult in general. The problem of deciding if a given configuration on a graph can
reach a particular vertex was shown in [14] and [16] to be NP-complete, even for diameter two graphs [10] or planar
graphs [15]. Interestingly, the problem was shown in [15] to be in P for graphs that are both planar and diameter two,
as well as for outerplanar graphs (which include 2-trees). The problem of deciding whether a graph G has pebbling number
at most kwas shown in [16] to be ΠP

2 -complete.
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In contrast, the pebbling number is known for many graphs. For example, in [17] the pebbling number of a diameter 2
graph G was determined to be n or n + 1. Moreover, [9] and [4] characterized those graphs having π (G) = n + 1, and
it was shown in [11] that one can recognize such graphs in quartic time, improving on the order n3m algorithm of [3].
Beginning a program to study for which graphs their pebbling number can be computed in polynomial time, the authors
of [1] produced a formula for the family of split graphs that involves several cases. For a given graph, finding to which case it
belongs takes O(n1.41) time. The authors also conjectured that the pebbling number of a chordal graph of bounded diameter
can be computed in polynomial time.

In opposition to the small diameter, large tree width case of split graphs, we turn here to chordal graphs with large
diameter and small tree width.1 Building on [2], in this paper we study 2-paths, the sub-class of 2-trees whose graphs
have exactly two simplicial vertices, as well as what we call semi-2-trees, the sub-class of 2-trees, each of whose blocks are
2-paths, and prove an exact formula that can be computed in linear time.

2. Preliminary definitions and results

In order to simplify notation, for a subgraph H ⊂ G or subset H ⊂ V (G) we write C(H) to denote
∑

v∈V (H)C(v). We use CH
for the restriction of C to H .

A simplicial vertex in a graph is a vertex whose neighbors form a complete graph. It is k-simplicial if it also has degree k.
A k-tree is a graph G that is either a complete graph of size k or has a k-simplicial vertex v for which G−v is a k-tree. A k-path
is a k-tree with exactly two simplicial vertices. A semi-2-tree is a graph in which each of its blocks is a 2-path, with each of
its cut-vertices being simplicial in all of its blocks. For the purpose of our work we derive a new characterization of 2-paths
that facilitates the analysis of its pebbling number.

Let P = x0, x1, . . . , xd−1, xd be a shortest rs-path between two vertices r = x0 and s = xd of G, where d = dist(r, s) =

diam(G). For 1 ≤ i ≤ d−1, an xi−1xi+1-fan (centered on xi) is a subgraph F of G consisting of the subpath xi−1, xi, xi+1 of P and
a path Q = xi−1, vi,1, . . . , vi,ki , xi+1 with ki ≥ 1 such that xi is adjacent to every vertex of Q . We call F ′ the set {vi,1, . . . , vi,ki}.

Let Fi be an xi−1xi+1-fan and Fi+1 be an xixi+2-fan, centered on xi and on xi+1, respectively. We say that Fi and Fi+1 are
opposite-sided if F ′

i ∩ F ′

i+1 = ∅; and that they are same-sidedwhen F ′

i ∩ F ′

i+1 = {vi,ki} and vi,ki = vi+1,1.
The graph G is an overlapping fan graph if the following three conditions are satisfied:

• for every 1 ≤ i ≤ d − 1, there is a subgraph Fi which is an xi−1xi+1-fan centered on xi,
• for every 1 ≤ i ≤ d − 2, Fi and Fi+1 are either opposite-sided or same-sided, and
• G is the union of the subgraphs Fi for 1 ≤ i ≤ d − 1.

If we agree in calling F1 an upper fan, then all further fans of an overlapping fan graph can be classified into upper or lower
(opposite-sided from upper) — see Fig. 1.

Notice that, in general, the description of a graph as an overlapping fan graph, may be done using different paths P (see
the examples in the center and right of Fig. 1). The path P used to describe G as an overlapping fan graph is called the spine
of G.

In an overlapping fan graph, |F ′

i ∩ F ′

i+3| = 0; while |F ′

i−1 ∩ F ′

i+1| ≤ 1, with equality if and only if ki = 1. Notice that we can
always choose the spine P so that |F ′

i−1 ∩ F ′

i+1| = 0 by swapping the names of vertices xi and vi,1, changing the fans Fi−1, Fi,
and Fi+1 from being same-sided to Fi being opposite-sided from Fi−1 and Fi+1. Such a choice of path P is called pleasant (see
Fig. 1).

For an internal vertex xi of the spine of an overlapping fan graph G, we let Axi be the set of vertices of F ′

i that are in no
other fan of G. If Axi = ∅ then ki = 1 and vi,1 ∈ F ′

i−1 or F ′

i+1; or ki = 2 and vi,1 ∈ F ′

i−1 and vi,2 ∈ F ′

i+1. In the former let exi be
the edge xi−1vi,1 or vi,1xi+1 respectively, and in the latter let exi = {vi,1, vi,2}. The following fact will be used in Section 5.2.

Claim 1. If Axi is empty (non empty) then G−exi (G−Axi ) is the union of two overlapping fan graphs each one with xi as simplicial
vertex and no other vertex in common.

A 2-path of diameter 1 is just a path on two vertices. In this case, its spine is the graph itself. For larger diameter we have
the following lemma.

Lemma 2. A graph G of diam(G) ≥ 2 is a 2-path if and only if it is an overlapping fan graph.

Proof. An overlapping fan graph is certainly a 2-path.
Let G be a 2-path with simplicial vertices r and s and diameter at least 2. The 2-path on 4 vertices is a fan, and hence an

overlapping fan graph, so we assume that G has at least 5 vertices. Let G′
= G − s, with simplicial vertices r and s′. Since G′

is a 2-path, by induction it is also an overlapping fan graph.
If diam(G) > diam(G′) then the inclusion of s creates a new fan centered on s′. Otherwise, the inclusion of s extends the

last fan of G′. In both cases, then, G is an overlapping fan graph. □

1 One can find the definition of tree-width in [5], but it is not necessary for this paper.
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