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a b s t r a c t

When presented with a difficult perceptual decision, human observers are able to make metacognitive
judgements of subjective certainty. Such judgements can be made independently of and prior to any
overt response to a sensory stimulus, presumably via internal monitoring. Retrospective judgements
about one’s own task performance, on the other hand, require first that the subject perform a task and
thus could potentially be made based on motor processes, proprioceptive, and other sensory feedback
rather than internal monitoring. With this dichotomy in mind, we set out to study performance monitor-
ing using a brain-computer interface (BCI), with which subjects could voluntarily perform an action –
moving a cursor on a computer screen – without any movement of the body, and thus without
somatosensory feedback. Real-time visual feedback was available to subjects during training, but not
during the experiment where the true final position of the cursor was only revealed after the subject
had estimated where s/he thought it had ended up after 6 s of BCI-based cursor control. During the first
half of the experiment subjects based their assessments primarily on the prior probability of the end posi-
tion of the cursor on previous trials. However, during the second half of the experiment subjects’ judge-
ments moved significantly closer to the true end position of the cursor, and away from the prior. This
suggests that subjects can monitor task performance when the task is performed without overt move-
ment of the body.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Studies of performance monitoring necessarily involve the per-
formance of a task, and performance of a task, where performance
is measured, invariably involves movement of the body (in order to
register a response), even if only a single finger. Even without
experimentally-delivered feedback the subject will at a minimum
have proprioceptive and tactile feedback, and likely also visual
(e.g. seeing one’s own finger press a button) and auditory feedback,
and any one of these could be used to infer which response was
given and/or how well the task was performed.

In studies of perception of weak or ambiguous stimuli, on the
other hand, it is possible to ask subjects, ‘‘how sure are you of what
you just saw/heard/felt?”. This kind of ‘‘second-order” judgement

can be made independently of and prior to any feedback, and pre-
sumably requires internal evaluation of the quality of the neuronal
evidence, also referred to as metacognition (Fleming, Dolan, &
Frith, 2012; Metcalfe, 1996; Metcalfe & Greene, 2007; Miele,
Wager, Mitchell, & Metcalfe, 2011; Smith, Shields, & Washburn,
2003; Yeung & Summerfield, 2012). Previous research has looked
at metacognition of somatosensory perception (Hilgenstock,
Weiss, & Witte, 2014) and attention (Kerr, Sacchet, Lazar, Moore,
& Jones, 2013; Whitmarsh, Barendregt, Schoffelen, & Jensen,
2014), but not motor imagery, and not in the context of brain-
computer interface (BCI) control.

Theorists have raised the distinction between decisional and
post-decisional loci of metacognition in the context of an
evidence-accumulation framework (Yeung & Summerfield, 2012).
The primary task involves accumulation of sensory evidence up
to a threshold, which, when reached, gives way to an overt
response. In decisional-locus models, the very same information
encoded by the neuronal decision variable (DV) is used to make
both the first-order response and the second-order (metacognitive)
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judgement. Post-decisional locus models hold that processing of
stimulus information continues even after the decision threshold
is reached, leading potentially to changes-of-mind (Kaufman,
Churchland, Ryu, & Shenoy, 2015) and, importantly, contributing
to retrospective judgements of decision confidence (Murphy,
Robertson, Harty, & O’Connell, 2015).

While it has been argued that performance monitoring and
metacognition are governed by common principles, previous
authors have suggested that a distinction be drawn between the
two, and in particular the metacognition of agency (Haggard &
Tsakiris, 2009; Metcalfe & Greene, 2007; Miele et al., 2011;
Synofzik, Vosgerau, &Newen, 2008). Importantly, confidence judge-
ments are thought to rely on neural processing in the lateral and
medial prefrontal cortex (PFC) and possibly in areas of the parietal
cortex as well (Kiani & Shadlen, 2009), whereas error monitoring
has been reliably linked to activity in the anterior-cingulate cortex
(ACC) (Dehaene, Posner, & Tucker, 1994).With these details inmind
it is instructive to distinguish between two kinds of self monitoring:

(1) Monitoring of one’s own bodily movements or bodily state.
For example, one estimates one’s own reaction time by monitoring
the delay between stimulus onset and proprioceptive signals from
the responding hand. (2) Monitoring of one’s own brain activity,
without relying on any signals from the body. For example esti-
mating the quality of sensory evidence by directly probing neural
activity in the relevant areas of sensory cortex. We set out to ask
whether the latter kind of self monitoring, which is possible for
sensory-evoked processes (metacognition for perception), is also
possible for neural activity that is endogenously and voluntarily
generated (performance monitoring for BCI action).

We posed this question using a motor-imagery-based (MI-
based) brain-computer interface (BCI), with which subjects could
voluntarily perform an action (moving a cursor on a computer
screen) without any movement of the body and in the absence of
any movement-related somatosensory feedback. Importantly,
cursor-movement feedback was only visible to subjects during a
pre-experiment practice session. No on-line visual feedback was
given during the actual BCI experiment, during which the true final
position of the cursor was only revealed to the subject at the end of
each trial, after s/he had estimated where s/he thought the cursor
had ended up after 6 s of BCI control.

Results show that during the first half of the experiment (min-
imum 120 trials) subjects based their assessments on the prior
probability of the end position of the cursor on previous trials.
However, during the second half of the experiment subjects’ judge-
ments moved significantly closer to the actual end position of the
cursor, and away from the prior. This suggests not only that sub-
jects can monitor performance of a task performed without move-
ment, but also that this capacity can be learned. We conclude that
internal monitoring is possible, not only for sensory-evoked neural
activity (Fleming, Huijgen, & Dolan, 2012; Fleming, Weil, Nagy,
Dolan, & Rees, 2010; Kiani & Shadlen, 2009; Pleskac &
Busemeyer, 2010; Yeung & Summerfield, 2012), but also for volun-
tarily generated patterns of brain activity used in BCI control.

2. Materials and methods

2.1. Participants

For as yet unknown reasons, a substantial proportion of people
who attempt to control a motor-imagery-based BCI are unable to
do so – a phenomenon known as ‘‘BCI illiteracy” (Vidaurre &
Blankertz, 2010). With this in mind, we pre-screened seventeen
potential participants for their ability to control the BCI after an
initial training session. Of these, four were not able to perform
the task well enough (see below under ‘‘Practice with real time

visual feedback”) and another six were unable to perform the task
at all (the BCI classifier was unable to adequately fit the training
data). This left seven subjects, all males, right handed, aged
27.4 ± 2.9 years old (mean ± SD). All participants had normal or
corrected-to-normal vision and gave informed consent prior to
participation. The study was undertaken in accordance with the
ethical standard as defined in the Declaration of Helsinki and
was approved by the local ethics research committee at the
University of Lausanne.

2.2. Electroencephalography (EEG) recordings

Electroencephalography (EEG) was recorded from a 27-channel
montage centered over the sensorimotor cortex at a sampling rate
of 256 Hz (g.tec, Schiedelberg, Austria) as used previously (Evans,
Gale, Schurger, & Blanke, 2015; Marchesotti et al., submitted for
publication). Electrodes were grounded by an additional electrode
placed on the forehead, and then re-referenced to electrodes
attached to the earlobes. Data were processed in real-time using
a custom Simulink model (Mathworks, Natick, Massachusetts,
USA), with 256 classifier decisions per second smoothed by taking
the average within a 1-s sliding window. Real-time BCI data pro-
cessing methods are described in detail elsewhere (Guger et al.,
2000).

2.3. Protocol and paradigm

The experiment took place during a single recording session of
about 1–2 h (two recording sessions on two consecutive days for
S1). During all recordings, subjects were comfortably seated about
50 cm away from a computer display with their hands on their laps
(palms up).

2.3.1. BCI training procedure
Participants first performed a lateralized motor imagery task

without visual feedback (Fig. 1). The data from this task were used
to train the classifier. Subjects performed 2 blocks of 40 trials each
(20 with left cue and 20 with right cue, randomly interleaved). The
subjects had to alternatively perform left- and right-hand motor
imagery (MI): While staying completely immobile and keeping
their gaze on a fixation cross, the subjects had to imagine the
sensation of moving their right (or left) hand (e.g. squeezing an
imaginary ball) for 6 s according to a visual cue (arrow) pointing
to the right (or left). Subjects were made aware of the difference
between forming a visual image of their hand moving and imagin-
ing the somato-motor sensation associated with moving their
hand, and were asked to do the latter.

Each trial started with the appearance on the screen of a fixa-
tion cross and a cue (an arrow pointing to the right or to the left)
which remained on for 2 s (Fig. 1). Then the arrow disappeared
cueing the subject to initiate MI. After 6 s, the fixation cross disap-
peared, indicating to the subject that s/he can relax (move, blink,
etc.) for 3–3.6 s (drawn randomly from a uniform distribution).
Then a new trial started with the appearance of the fixation cross
and the cue on the screen.

We used the Common Spatial Patterns (CSP) decomposition
(Blankertz, Tomioka, Lemm, Kawanabe, & Muller, 2008) for dimen-
sionality reduction and feature selection, and used linear discrim-
inant analysis (LDA) to train the classifier (Parra, Spence, Gerson, &
Sajda, 2005). We used the first two and last two spatial patterns in
the ranking returned from the CSP procedure as inputs to the clas-
sifier, and hence our feature space had four dimensions.

2.3.2. Practice with real-time visual feedback
After training the classifier, subjects performed 1 or 2 practice

blocks of 40 trials each (20 with left cue and 20 with right cue)
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