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Abstract

Context Unpredictability and uncertainty about future evolutions of both the system and its environment may easily compromise the
behavior of the system. The subsequent software failures can have serious consequences. When dealing with open environments,
run-time monitoring is one of the most promising techniques to detect software failures. Several monitoring approaches have been
proposed in the last years; however, they suffer from two main limitations. First, they provide limited information to be exploited
at run-time for early detecting and managing situations that most probably will lead to failures. Second, they mainly rely on
logic-based specifications, whose intrinsic complexity may hamper the use of these monitoring approaches in industrial contexts.
Objective In order to address these two limitations, this paper proposes a novel approach, called PREDIMO (PREDIctive MOnitoring).
The approach starts from scenario-based specifications, automatically generates predictive monitors called MAs (Multi-valued Au-
tomata), which take into account the actual status and also the possible evolution of both system and environment in the near future,
and enables the definition of precise strategies to prevent failures. More specifically, the generated monitors evaluate the specified
properties and return one of the seven different values representing the degree of controllability of the system and the distance of
the potential incoming failure. The translation from scenario-based specifications to MAs preserves the semantics of the starting
specification.
Method We use the design and creation research methodology to design an innovative approach that fills highlighted gaps of
state-of-the-art approaches. The validation of the approach is performed through a large experimentation with OSGi (Open Service
Gateway Initiative) applications.
Results We present a novel language to specify the properties to be monitored. Then, we present a novel approach to automatically
generate predictive monitors from the specified properties.
Conclusions The overall approach is tool supported and a large experimentation demonstrates its feasibility and usability.
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1. Introduction

Environments in which software-intensive systems are re-
quired to operate are increasingly evolving from static, closed
and controllable to dynamic, open and uncontrollable due to
the advent of new software paradigms such as Service-Oriented
Architecture [1], Cyber-Physical Systems [2], Internetware [3],
and the Internet of Things [4], just to name a few. The be-
havior of such software systems is jointly determined by their
internal structure, and by the inputs received from both envi-
ronment and end-users [5]. In this context, change is becoming
the norm rather than the exception and the consequent unpre-
dictability and uncertainty about future evolutions of both sys-
tems and environments are posing new challenges to software
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engineers [6, 7]. One of the most challenging problems is how
to detect software failures in open environments as soon as pos-
sible. In general, software failure [8] means the undesirable or
unacceptable external behavior of software when it is running.
The continuous changes of environment and the system itself
may lead to software behaviors that violate the original require-
ment specifications, resulting in software failures.

Traditional design-time verification techniques, such as test-
ing and model checking, can ensure that software systems sat-
isfy desired properties in closed or controllable environments.
However, it is becoming difficult to cope with the continuous
evolving environments and the execution states of systems at
run-time in open environments. Run-time verification based
on monitors has become the basic means of detecting soft-
ware failures in such environments. The main idea of run-
time verification is to synthesize a monitor, which can check
whether run-time behaviors satisfy or diverge from desired
properties [9, 10].

To design an efficient and effective monitor, the following
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