
 

Accepted Manuscript

Automatic Generation of Predictive Monitors from Scenario-based
specifications

Pengcheng Zhang, Patrizio Pelliccione, Hareton Leung, Xuandong Li

PII: S0950-5849(17)30150-7
DOI: 10.1016/j.infsof.2018.01.014
Reference: INFSOF 5952

To appear in: Information and Software Technology

Received date: 22 February 2017
Revised date: 26 December 2017
Accepted date: 30 January 2018

Please cite this article as: Pengcheng Zhang, Patrizio Pelliccione, Hareton Leung, Xuandong Li, Auto-
matic Generation of Predictive Monitors from Scenario-based specifications, Information and Software
Technology (2018), doi: 10.1016/j.infsof.2018.01.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2018.01.014
https://doi.org/10.1016/j.infsof.2018.01.014


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Automatic Generation of Predictive Monitors from
Scenario-based specifications

Pengcheng Zhanga,∗, Patrizio Pelliccioneb, Hareton Leungc, Xuandong Lid

aCollege of Computer and Information, Hohai University, Nanjing 211110, P.R.China
bChalmers University of Technology | University of Gothenburg, Department of Computer Science and Engineering, Sweden

cDepartment of Computing, Hong Kong Polytechnic University, HongKong, China
dState Key Laboratory of Novel Software Technology, Nanjing University, Nanjing 210046, P.R.China

Abstract

Context Unpredictability and uncertainty about future evolutions of both the system and its environment may easily compromise the
behavior of the system. The subsequent software failures can have serious consequences. When dealing with open environments,
run-time monitoring is one of the most promising techniques to detect software failures. Several monitoring approaches have been
proposed in the last years; however, they suffer from two main limitations. First, they provide limited information to be exploited
at run-time for early detecting and managing situations that most probably will lead to failures. Second, they mainly rely on
logic-based specifications, whose intrinsic complexity may hamper the use of these monitoring approaches in industrial contexts.
Objective In order to address these two limitations, this paper proposes a novel approach, called PREDIMO (PREDIctive MOnitoring).
The approach starts from scenario-based specifications, automatically generates predictive monitors called MAs (Multi-valued Au-
tomata), which take into account the actual status and also the possible evolution of both system and environment in the near future,
and enables the definition of precise strategies to prevent failures. More specifically, the generated monitors evaluate the specified
properties and return one of the seven different values representing the degree of controllability of the system and the distance of
the potential incoming failure. The translation from scenario-based specifications to MAs preserves the semantics of the starting
specification.
Method We use the design and creation research methodology to design an innovative approach that fills highlighted gaps of
state-of-the-art approaches. The validation of the approach is performed through a large experimentation with OSGi (Open Service
Gateway Initiative) applications.
Results We present a novel language to specify the properties to be monitored. Then, we present a novel approach to automatically
generate predictive monitors from the specified properties.
Conclusions The overall approach is tool supported and a large experimentation demonstrates its feasibility and usability.

Keywords: Scenario-based specifications, Property Sequence Charts, Run-time Monitor, Predictive Monitor

1. Introduction

Environments in which software-intensive systems are re-
quired to operate are increasingly evolving from static, closed
and controllable to dynamic, open and uncontrollable due to
the advent of new software paradigms such as Service-Oriented
Architecture [1], Cyber-Physical Systems [2], Internetware [3],
and the Internet of Things [4], just to name a few. The be-
havior of such software systems is jointly determined by their
internal structure, and by the inputs received from both envi-
ronment and end-users [5]. In this context, change is becoming
the norm rather than the exception and the consequent unpre-
dictability and uncertainty about future evolutions of both sys-
tems and environments are posing new challenges to software

∗I am corresponding author
Email addresses: pchzhang@hhu.edu.cn (Pengcheng Zhang),

patrizio.pelliccione@gu.se (Patrizio Pelliccione),
hareton.leung@polyu.edu.hk (Hareton Leung), lxd@nju.edu.cn
(Xuandong Li)

URL: author-one-homepage.com (Pengcheng Zhang)

engineers [6, 7]. One of the most challenging problems is how
to detect software failures in open environments as soon as pos-
sible. In general, software failure [8] means the undesirable or
unacceptable external behavior of software when it is running.
The continuous changes of environment and the system itself
may lead to software behaviors that violate the original require-
ment specifications, resulting in software failures.

Traditional design-time verification techniques, such as test-
ing and model checking, can ensure that software systems sat-
isfy desired properties in closed or controllable environments.
However, it is becoming difficult to cope with the continuous
evolving environments and the execution states of systems at
run-time in open environments. Run-time verification based
on monitors has become the basic means of detecting soft-
ware failures in such environments. The main idea of run-
time verification is to synthesize a monitor, which can check
whether run-time behaviors satisfy or diverge from desired
properties [9, 10].

To design an efficient and effective monitor, the following

Preprint submitted to Information and Software Technology February 6, 2018



https://isiarticles.com/article/120233

