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h i g h l i g h t s

• We study acceptance sets of co-monotone, convex risk measures.
• In the case of finite state-spaces we give a complete geometric characterization.
• Applications in low dimensional situations are discussed in detail.
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a b s t r a c t

We present a geometric characterization of acceptance sets for monotone, co-monotone and convex
risk measures on finite state spaces. Geometrically, such acceptance sets can be represented by convex
polygons with edges only on certain hyperplanes. We also provide some lower dimensional examples,
and study acceptance sets for value at risk and expected shortfall.
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1. Introduction

The oldest risk measure that has been used in finance was
variance. It was already introduced into applications byMarkowitz
(1952). Later, more sophisticated risk measures like value at risk
(VaR) have become standard among finance practitioners.

In various applications, however, risk measures are used only
indirectly: they define the range of portfolios that have an accept-
able risk—the portfolios in the ‘‘acceptance set’’. Mathematically,
the key object is therefore in fact not the risk measure, but the ac-
ceptance set of portfolios the risk of which is supposed to be toler-
able from the perspective of the regulatory authority.

The theory of acceptance sets (and the related concept of
capital requirements) has had significant influence on solvency
regulations, such as the Basel regimes for banks and Solvency II
for insurance companies, and thus on the whole financial sector.
There is nowadays a rich theory that axiomatizes ‘‘reasonable’’
acceptance sets. This started with the seminal paper by Artzner
et al. (1999) for finite probability spaces, followed by Delbaen
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(2002) for general probability spaces, and built in part upon a
rich literature in actuarial science (Bühlmann, 1970; Gerber, 1979;
Goovaerts et al., 1984;Deprez andGerber, 1985; see alsoGoovaerts
et al., 2010 and the references therein). This notion of ‘‘coherent’’
risk measures then led to the definition of ‘‘convex’’ risk measures
(Föllmer and Schied, 2002) and to ‘‘entropy coherent’’ and ‘‘entropy
convex’’ risk measures (Laeven and Stadje, 2013). Generalizations
to convex acceptance sets and convex capital requirements have
been obtained by Föllmer and Schied (2002) and Frittelli and
Gianin (2002).

It is interesting to notice that the commonly used VaR fails
to satisfy the coherence requirements in these definitions which
spurred the interest in trying to find better ways to define
acceptance sets.

This leads to the question of how acceptance sets of certain
classes of risk measures can be characterized in terms of their in-
trinsic properties. Besides pure mathematical interest, such char-
acterizations can also be useful to define appropriate acceptance
sets for an application that could not easily be defined using risk
measures.

In this article we follow this idea and give a characterization
of acceptance sets for co-monotone and convex risk measures. The
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concept of co-monotonicity has applications in determining pro-
visions for payment obligations in the future, for giving bounds
on the price of Asian options and other actuarial and financial
problems (Dhaene et al., 2002). Co-monotonicity has also been ap-
plied in finding general properties of optimal investment strategies
(Rieger, 2011; Hens and Rieger, 2014) that extend classic results by
Dybvig (1988).

Our results complement existing results in the literature,
in particular, the axiomatization of concave distortions (i.e.,
law-invariant convex co-monotone riskmeasures; see Föllmer and
Schied, 2011, Chapter 4.6) and of entropy coherent risk measures
(i.e., potentially independently (rather than co-monotonically)
additive risk measures; see Laeven and Stadje, 2013) in terms of
their acceptance sets.

The structure of this article is as follows: Ourmain characteriza-
tion result and its derivation will be presented in Section 2. Exam-
ples for state spaces with two, three and four states are presented
in Section 3. Finally, Section 4 discusses possible extensions and
concludes.

2. Acceptance sets of co-monotone risk measures

In this section, we provide a characterization of acceptance sets
for monotone, co-monotone and convex risk measures.

Let us start with recalling some basic definitions. For further
reading we refer to Denneberg (1994) and Föllmer and Schied
(2011).

We always assume that (Ω, F ) is a measurable space, where
Ω is a state space and F its filtration.

Definition 2.1 (Monotonicity). A bounded map ρ : L∞(Ω, F ) is
calledmonotone if for all X, Y ∈ Ω wehave that X ≤ Y (i.e. X(ω) ≤

Y (ω) for all ω ∈ Ω) implies ρ(X) ≥ ρ(Y ).

Definition 2.2 (Co-monotonicity of Random Variables). Let X , Y be
random variables on (Ω, F ), then X and Y are co-monotone if for
all ω1, ω2 ∈ Ω:

(X(ω1) − X(ω2))(Y (ω1) − Y (ω2)) ≥ 0.

Definition 2.3 (Co-monotone Additivity of Maps). A bounded map
ρ : L∞(Ω, F ) → R is co-monotone if for all co-monotone X, Y :

ρ(X + Y ) = ρ(X) + ρ(Y ).

Definition 2.4 (Translation Invariance). A bounded map ρ : L∞

(Ω, F ) → R is translation invariant if for all X ∈ Ω and a ∈ R:

ρ(X + a) = ρ(X) − a.

Definition 2.5 (Risk Measure). A bounded, monotone and transla-
tion invariant map ρ : L∞(Ω, F ) → R is called a risk measure.

Assumption 2.6. In the following, we assume Ω = {ω1, . . . , ωn}

with n ∈ N and F0 = {Ω, ∅}, F1 = P (Ω), i.e. a finite state
space with no information about the final state initially, but full
information at the end.

We will frequently identify random variables on (Ω, F ) with Rn.
This can be interpreted as a scenario analysiswhere a finite number
of scenarios that influence the value of the portfolio may occur and
ωi is the value of the portfolio in the case of scenario i.

Our first goal is to find a geometric interpretation of
co-monotone functions. This will later enable us to prove a com-
plete classification of acceptance sets for co-monotone risk mea-
sures. We start with a number of definitions of geometrical objects
that are needed for the subsequent results. In Section 3, we will
provide lower dimensional examples illustrating these definitions.

Definition 2.7 (Dividing Hyperplanes). Let X be a random variable
on (Ω, F ). We define the dividing hyperplanes Hij for i, j ∈

{1, . . . , n} by

Hij := {X ∈ L∞(Ω, F ), X(ωi) = X(ωj)}.

Identifying random variables on (Ω, F ) with Rn, this translates to

Hij = {X ∈ Rn, Xi = Xj}.

We define H∗
:= ∩i,j Hij = {(x, x, . . . , x)|x ∈ R}.

We note that Hij = Hji and that there are therefore
n
2


dividing

hyperplanes in Rn. We define moreover:

Definition 2.8 (Halfplanes). The positive and negative ij-halfplanes
are:

H+

ij (Ω, F ) := {X ∈ L∞(Ω, F ), X(ωi) ≤ X(ωj)}

H−

ij (Ω, F ) := {X ∈ L∞(Ω, F ), X(ωi) ≥ X(ωj)}.

Again this can be translated into a definition of subsets on Rn:

H+

ij = {X ∈ Rn, Xi ≤ Xj}, H−

ij = {X ∈ Rn, Xi ≥ Xj}.

We mention that H+

ij = H−

ji . For the characterization of co-mono-
tonicity the intersections of such halfplanes will be of particular
importance. We therefore define:

Definition 2.9 (Facets). We call the following subsets of Rn the
facets of Rn

H :=

 
i,j∈{1,...,n},i<j

H
σij
ij , σij ∈ {+, −}


.

We note that we do not need to consider the pairs with i > j here,
since H−

ij = H+

ji . A more tricky point, however, is that some facets
are lower dimensional objects, i.e. their interior (the points that
have an open neighborhood which is completely contained in the
facet) is empty. We can see this in an example: If H ∈ H is in
the intersection of H+

ij ,H+

jk and H−

ik then Xi ≤ Xj ≤ Xk ≤ Xi,
thus Xi = Xj = Xk. Such facets are just subsets of other facets.
We therefore want to exclude them from the definition and call all
facets with non-empty interior comonotonicity-subsets or simply
c-subsets, for reasons that will become clear later:

Definition 2.10 (c-subsets).Wedefine the co-monotonicity-subsets
of Rn (short: c-subsets) as follows:
Sk


k :=


Sk :=


i,j∈{1,...,n},i≠j

H+

ij , Sk ⊂ Rn is non-empty


.

How many facets and c-subsets are there in Rn? We have n(n−1)
2

pairs (i, j) with i < j in the set {1, . . . , n}. Thus there are 2
n(n−1)

2

facets in Rn. To calculate the number of c-subsets, we identify
the pairs with directed edges in a graph where the vertices are
the numbers {1, . . . , n} and where the graph is complete (not
considering the orientation of its edges).1 Whenever there is a cycle
in the graph, the corresponding facet cannot be a c-subset, since the
directed edges lead to a cyclic set of inequalities like in the example
above. When there is no cycle, however, the facet is a c-subset.
We therefore only need to know how many non-cyclic, complete,
directed graphs exist for a given number of vertices.

1 Compare, e.g., Wallis (2007) for definitions of the graph theoretical terms.
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