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1. Introduction

Impulsive dynamical systems may be interpreted as suitable mathematical models of real world phenom-
ena that display abrupt changes in their behavior, and are described by three objects: a continuous semiflow 
on a metric space X; a set D ⊂ X where the flow experiments sudden perturbations; and an impulsive 
function I : D → X which determines the change on a trajectory each time it collides with the impulsive 
set D. See for instance reference [20], where one may find several examples of evolutive processes which are 
analyzed through differential equations with impulses.

Dynamical systems with impulse effects seem to be the most adequate mathematical models to describe 
real world phenomena that exhibit sudden changes in their states. For example, the theoretical characteriza-
tions of wormholes [27], also called Einstein–Rosen bridges, seem to fit the description of the traverse effects 
an impulsive function I acting on a set D induces on a semiflow, thereby possibly creating odd shortcuts 
in space–time [28]. While at present it appears unlikely that nature allows us to observe a wormhole, these 
hypothetical entities, with unusual and inherently unstable topological, geometrical and physical properties, 
show up as valid solutions of the Einstein field equations for the gravity. We also refer the reader to the 
reference [20], where other examples of nature evolution processes are analyzed within the new branch of 
differential equations with impulses; in addition, see [3,8,13,14,16,18,21,22,26,29].

For many years the achievements on the theory of impulsive dynamical systems concerned the behavior of 
trajectories, their limit sets and their stability; see e.g. [5,6,10,11,19] and references therein. The first results 
on the ergodic theory of impulsive dynamical systems were established in [1], where sufficient conditions 
for the existence of invariant probability measures on the Borel sets were given. Afterwards, it was natural 
to look for some special classes of invariant measures. So far, a useful approach has been to use potential 
functions and finding equilibrium states. However, as the classical notion of topological entropy requires 
continuity and impulsive semiflows exhibit discontinuities, it became necessary to introduce a generalized 
concept of topological entropy, and this has been done in [2]. Moreover, it was proved that the new notion 
coincides with the classical one for continuous semiflows, and also a partial variational principle for impulsive 
semiflows: the topological entropy coincides with the supremum of the metric entropies of time-one maps.

Our aim in this paper was to extend the results of [2] in two directions. Firstly we establish a variational 
principle for a wide class of potential functions; then we present sufficient conditions for the existence and 
uniqueness of equilibrium states for those potential functions. Once more, due to the discontinuities of the 
impulsive semiflows, we needed to define a generalized concept of topological pressure; and again we show 
that this new definition coincides with the classical one for continuous semiflows.

1.1. Impulsive semiflows

Consider a compact metric space (X, d), a continuous semiflow ϕ : R+
0 ×X → X, a nonempty compact 

set D ⊂ X and a continuous map I : D → X such that I(D) ∩D = ∅. Under these conditions we say that 
(X, ϕ, D, I) is an impulsive dynamical system. The first visit of each ϕ-trajectory to D will be registered by 
the function τ1 : X → [0, +∞], defined as

τ1(x) =
{

inf {t > 0: ϕt(x) ∈ D} , if ϕt(x) ∈ D for some t > 0;
+∞, otherwise.

The impulsive trajectory γx and the subsequent impulsive times τ2(x), τ3(x), . . . (possibly finitely many) of 
a given point x ∈ X are defined according to the following rules: for 0 ≤ t < τ1(x) we set γx(t) = ϕt(x). 
Assuming that γx(t) is defined for t < τn(x) for some n ≥ 1, we set

γx(τn(x)) = I(ϕτn(x)−τn−1(x)(γx(τn−1(x)))).
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