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In this paper, a new variational Bayesian (VB) learning algorithm is proposed to remove sparse impulsive 
noise from speech signals. The clean signal is modeled using an autoregressive (AR) model on frame 
basis. The contaminated signal is modeled as the sum of the AR model of the clean speech signal, 
a sparse noise term and a dense Gaussian noise term. The sparse noise and the dense Gaussian noise 
terms model the large additive values caused by the impulsive noise and the small additive values or 
Gaussian noise, respectively. A hierarchical Bayesian model is constructed for the contaminated signal and 
a VB framework is used to estimate the parameters of the model. The AR model parameter estimation, 
the speech signal recovery and the sparse impulsive noise removal are carried out simultaneously. The 
proposed algorithm starts from random initial values and it does not require training and a threshold as 
compared to other methods. Experiments are performed using a standard speech database and impulsive 
noise generated from a probabilistic impulsive noise model and real impulsive noise. The comparison of 
obtained results with other methods demonstrates the performance of the proposed method.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Various types of background noises can degrade the quality 
of speech signals, which may affect speech intelligibility and au-
tomatic speech recognition [1]. Among these background noises, 
one specific noise is the impulsive noise. The impulsive noise can 
be found in adverse communication channel environment, signal 
dropouts [2,3], archived gramophone recordings [4], and in daily 
life such as the clicks of keyboard and the hitting of rain drops 
on the windshield of a moving car [5]. Broadband noise also ex-
ists with the impulsive noise [6–9], and elimination of both these 
noises is difficult [7].

Various methods have been proposed to minimize the effects of 
impulsive noise. These methods can mainly be classified into two 
categories – AR based [2,6–8,10–14] and not AR based [5,15–17]. 
In [2], the residuals of the speech signal obtained by inverse fil-
tering are further processed by matched filtering to detect the 
impulsive noise and then the corrupted signal is interpolated by 
the neighbors. Warped linear prediction based detection method 
has been proposed to improve the detection performance [10]. 
Bayesian model is used to detect and estimate the signal in [11]
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but the AR coefficients are not estimated simultaneously. The si-
multaneous estimation of the AR coefficients, the detection of the 
impulsive noise and the reconstruction of the signal have been car-
ried out in [8,12,13]. In addition, these methods can also eliminate 
one type of the broadband noise – the white Gaussian noise in the 
same time. In [13], the extended Kalman filter (EKF) based method 
is proposed and it has been proved that the combination of the 
forward and backward time (reversing the time axes) prediction 
improves the accuracy of signal estimation. Bidirectional detection 
and reconstruction have also been proposed in [7], where the de-
tection results using normal time signal and the time reversed sig-
nal have been combined using some fusion rules designed by the 
authors, and the normal time and time reversed reconstruction re-
sults have been linearly combined with the weights obtained based 
on minimum variance unbiased estimation. The features of the 
above mentioned methods mainly include one or more of the three 
aspects described as follows. The first is that, the estimation of the 
AR coefficients, the detection of the impulsive noise and the recon-
struction of the original signal are not carried out simultaneously. 
The second is that the combination of the forward and backward 
estimation is not integrated. The third is that thresholds should 
be used. The methods that are not based on AR model including 
the wavelet based method [5,15], the SD-ROM (Signal Dependent 
Rank Order Mean) based method [16] and STFT (short time Fourier 
transform) method [17], wherein threshold is also used for detec-
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tion. Although many algorithms have been proposed to remove the 
impulsive noise but most of them are focused on music signals.

The samples corrupted by large impulses can also be regarded 
as additive outliers that are different from innovation outliers. 
Several methods have been proposed to deal with these outliers 
including the detection of the outliers [18,19] and the use of dis-
tributions robust to the presence of outliers [20]. If some suc-
cessive data points corrupted by the audio impulsive noise are 
large then they can be regarded as outliers. Multiple successive 
outliers are also called patches of outliers, but are different with 
audio impulsive noise as audio impulsive noise also contains small 
values. Therefore, processing of the large values in audio impul-
sive noise processing method is related with methods dealing with 
patches of outliers [11], but these methods cannot be used to deal 
with impulsive noise directly. These methods include the diagnos-
tic method for ARIMA (autoregressive integrated moving average 
model) [21], the Gibbs sampling based method for AR model [22], 
and the diagnostic method based on local influence for ARIMA 
model [23]. However, simultaneous estimation of the signal, de-
tection of the outliers and reconstruction of the signal are not 
integrated in these methods.

In this work, a new method is proposed to recover a speech 
signal that is contaminated by sparse impulsive noise. The word 
sparse is used here because the number of samples corrupted by 
the impulsive noise in speech signal may be fewer than the to-
tal number of speech samples [3,4]. In the proposed method, the 
estimation of the AR coefficients, estimation of the sparse impul-
sive noise and recovery of the speech signal are carried out in an 
integrated manner. The clean speech signal is modeled by an au-
toregressive (AR) model on frame basis. The corrupted signal is 
modeled as the sum of three terms, the AR model of the clean 
signal, a Gaussian noise term and a sparse noise term. The mod-
eling of the corrupted signal is similar to that of robust principal 
component analysis [24–26], but is different from the traditional 
modeling methods of additive noise in AR models using Kalman 
filtering for speech enhancement [27–29]. The large values in the 
impulsive noise are modeled by the sparse noise term while the 
small values are modeled by the dense Gaussian distribution. The 
white Gaussian noise is also modeled by the dense Gaussian dis-
tribution if white Gaussian noise exists. The model is explained in 
detail in Section 2 and Section 3. The relation between the clean 
speech signal generation process of the AR model and the contam-
inated observation can be transformed into a state space model. 
A hierarchical Bayesian model is constructed to obtain the param-
eters of the state space model. The sparsity of the impulse noise 
is automatically achieved by placing the Automatic Relevance De-
termination (ARD) prior over the sparse noise term [30]. The ARD 
prior has been used in sparse signal recovery, including relevance 
vector machine [31], compressive sensing [32] and robust princi-
pal component analysis [26]. In order to estimate the parameters 
of the hierarchical Bayesian model, a maximum likelihood based 
method [33] or a Markov Chain Monte Carlo (MCMC) method [34]
can be used. Variational Bayesian (VB) framework [35] can be 
adopted to approximate the posterior of the parameters because 
it can avoid overfitting and its computational cost is far lower 
than the MCMC. In this paper, the expected statistics of the hid-
den states are estimated by Kalman smoother [36] iterations and 
the posteriors of other parameters are estimated through M steps 
of a VB framework. In the proposed method, the forward and back-
ward estimation is combined by the Kalman smoother iteration, 
which is different to the Kalman filtering as it only proceeds in a 
single direction. The proposed method is an unsupervised method 
that starts with random initial values and has no requirements of 
threshold and tuning of the parameters.

The organization of the rest of the paper is as follows. In Sec-
tion 2, the formulation of speech signal corrupted by the additive 

impulsive noise is transformed into a state space model, and then 
a hierarchical Bayesian model is constructed accordingly. The clean 
signal, the parameters of the model and the sparse impulsive noise 
are estimated using a VB framework in Section 3. Experiments and 
analysis using sentences selected from standard speech database 
and probabilistic impulsive noise generation model are presented 
in Section 4 followed by Section 5 concluding this paper.

2. Bayesian modeling for speech corrupted by sparse impulsive 
noise

2.1. Modeling of speech signal corrupted by sparse impulsive noise

Let Y = {y1, · · · , yn, · · · , yN } be one frame of the clean speech 
signal, and then it can be modeled by an AR model as follows

yn =
p∑

m=1

am yn−m + εn (1)

where a = [a1, a2, · · · , ap] is the vector containing the AR coeffi-
cients, p is the model order, and εn is the innovation at time n. 
The frame length N is 320 which corresponds to 20 ms of speech 
signal under the 16 kHz sampling frequency.

Assuming the clean signal yn in Eq. (1) is contaminated by the 
sparse noise en corresponding to the large values in the impulsive 
noise, and then the corrupted signal can be expressed as:

xn = yn + vn + en (2)

where vn is the dense Gaussian noise which models the small im-
pulse values or the white Gaussian noise.

Let one frame of the corrupted signal be denoted as x =
{x1, x2, · · · , xN }, then the relationship of the corrupted signal and 
the underlying AR model must be transformed into state space 
form:

yn = Ayn−1 + cεn (3)

xn = cT yn + vn + en (4)

where yn = [
yn, yn−1, · · · , yn−p+1

]T
is the state vector at time n, 

and c = [1,0, · · · ,0]T is a constant vector. An auxiliary state y0 is 
introduced here as the initial state, then the collections of the state 
vectors can be written as Ȳ = {y0,y1, · · · ,yN}. The state transition 
matrix A of (3) is:

A =
[

aT

Ip−1 0(p−1)×1

]
p×p

(5)

In above equation, Ip−1 represents an (p − 1) × (p − 1) identity 
matrix, while 0(p−1)×1 denotes an (p − 1) × 1 vector with zero 
elements.

2.2. Probabilistic formulations

The innovation term εn is assumed to be a normally distributed 
variable with zero mean and covariance precision β:

p(εn) = N(εn|0, β−1) (6)

The sparse noise term en is normally distributed with zero mean 
and precision λn at each time n as in Eq. (7), which is an ARD 
prior [30]. Using this ARD prior, most of the λn will tends to in-
finity value or a relatively large value, and thus the sparse noise 
term en will concentrate at zero values. This is the process of au-
tomatic relevance determination that provides the sparsity of the 
impulsive noise. Further details about ARD can be found in [30].

p(en) = N(en|0, λ−1
n ) (7)
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