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a b s t r a c t 

In this paper, we study the existence of infinitely many solutions to a class of boundary value problems 

for impulsive fractional Hamiltonian systems. The main tool is the use of variant Fountain theorems, 

which allow to give some sufficient conditions to guarantee that the impulsive problems object of our 

study have infinitely many solutions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The topic of fractional differential equations has gained increas- 

ing importance due to its applications in many different fields of 

engineering and sciences such as electricity, mechanics, biology, 

chemistry, control theory, signal and image processing, wave prop- 

agation, fluid flow, rheology, diffusive transport akin to diffusion, 

electrical networks, probability, etc. For details on the applications 

to various fields, see, for instance, [1–7] and the references therein. 

On the other hand, impulsive differential equations serve as ba- 

sic models to study the dynamics of processes that are subject to 

sudden changes in their state. Recent developments in this field 

have also been motivated by many problems corresponding to ap- 

plications, such as control theory, population dynamics, medicine, 

etc. We refer to [8–17] for some monographs and papers including 

relevant information about this topic. For the application of criti- 

cal point theory and variational methods for impulsive differential 

equations, we mention the pioneering works [18–20] . 

Combining both ideas, we get impulsive fractional differential 

equations, which have been studied in recent years from different 

points of view which allow to deduce the existence of solutions 
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to this kind of equations (fixed point results, topological degree 

theory, upper and lower solutions method and monotone iterative 

technique,...), as can be seen, for instance, in [21–29] and the refer- 

ences therein. In particular, the authors of [23,26] analyze the ex- 

istence of solutions to a boundary value problem of Dirichlet type 

for fractional differential equations subject to impulses, as follows, 

⎧ ⎪ ⎨ ⎪ ⎩ 

t D 

α
T ( 

c 
0 D 

α
t u (t)) + a (t ) u (t ) = λ f (t , u (t )) , t � = t j , a.e. t ∈ [0 , T ] , 

�( t D 

α−1 
T 

( c 0 D 

α
t u ))(t j ) = μI j (u (t j )) , j = 1 , 2 , . . . , n, 

u (0) = u (T ) = 0 , 

(1) 

where t D 

α
T 

and 

c 
0 
D 

α
t are the right Riemann–Liouville and left Ca- 

puto fractional derivatives of order α ∈ (1/2, 1], respectively, 

f ∈ C([0 , T ] × R , R ) , I j ∈ C(R , R ) , j = 1 , . . . , n, a ∈ C([0 , T ] , R ) and 

λ, μ ∈ (0 , + ∞ ) are two parameters. In those references, by using 

variational methods and critical point theory, it is deduced the ex- 

istence of solutions to problem (1) . 

Motivated by the above facts, the aim of this paper is to es- 

tablish the existence of infinitely many solutions to the follow- 

ing boundary value problem for impulsive fractional differential 
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systems: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

t D 

α
T ( 

c 
0 D 

α
t u (t)) + A (t ) u (t ) = ∇F (t , u (t )) , t � = t j , a.e. t ∈ [0 , T ] , 

�( t D 

α−1 
T 

( c 0 D 

α
t u 

i ))(t j ) = I i j (u 

i (t j )) , i = 1 , 2 , . . . , N, 

j = 1 , 2 , . . . , l, 

u (0) = u (T ) = (0 , . . . , 0) ∈ R 

N , 

(2) 

where α ∈ (1/2, 1], A : [0 , T ] → M N×N (R ) is a continuous map 

from the interval [0, T ] to the set of N -order symmetric ma- 

trices, u (t) = (u 1 (t) , u 2 (t ) , . . . , u N (t )) , 0 = t 0 < t 1 < t 2 < · · · < t l < 

t l+1 = T , I i j : R → R , i = 1 , 2 , . . . , N, j = 1 , 2 , . . . , l, are continuous 

functions and F : [0 , T ] × R 

N → R is such that the following as- 

sumption holds: 

( H ) F ( t, x ) is measurable in t for every x ∈ R 

N and continuously 

differentiable in x for a.e. t ∈ [0, T ] and there exist a ∈ C(R 

+ , R 

+ ) , 
b ∈ L 1 ([0 , T ] , R 

+ ) such that 

| F (t, x ) | ≤ a (| x | ) b(t ) , |∇F (t , x ) | ≤ a (| x | ) b(t) , 

for all x ∈ R 

N and a.e. t ∈ [0, T ]. 

In condition (H), | ·| represents the p -norm in R 

N (1 < p < ∞ ) 

and, in problem (2) , we denote 

�( t D 

α−1 
T ( c 0 D 

α
t u 

i ))(t j ) = t D 

α−1 
T ( c 0 D 

α
t u 

i )(t + 
j 
) − t D 

α−1 
T ( c 0 D 

α
t u 

i )(t −
j 
) , 

t D 

α−1 
T ( c 0 D 

α
t u 

i )(t + 
j 
) = lim 

t → t + 
j 

( t D 

α−1 
T ( c 0 D 

α
t u 

i )(t)) , 

t D 

α−1 
T ( c 0 D 

α
t u 

i )(t −
j 
) = lim 

t → t −
j 

( t D 

α−1 
T ( c 0 D 

α
t u 

i )(t)) 

and ∇F (t, x ) = (F x 1 (t, x ) , . . . , F x N (t, x )) , for a.e. t ∈ [0, T ] and all x = 

(x 1 , . . . , x N ) ∈ R 

N . 

In particular, if we take α = 1 , (2) reduces to the standard sec- 

ond order Hamiltonian system of the following form ⎧ ⎪ ⎨ ⎪ ⎩ 

ü (t) + A (t ) u (t ) = ∇F (t , u (t )) , t � = t j , a.e. t ∈ [0 , T ] , 

�( ̇ u 

i )(t j ) = I i j (u 

i (t j )) , i = 1 , 2 , . . . , N, j = 1 , 2 , . . . , l, 

u (0) = u (T ) = (0 , . . . , 0) ∈ R 

N . 

(3) 

In both cases A ( t ) ≡ 0 and A ( t ) � = 0, the existence of solutions to 

the problem (3) has been intensively studied by many mathemati- 

cians (see, for instance, [30–33] and the references therein). 

On the other hand, a very recent and relevant work on the ho- 

moclinic solutions for fractional Hamiltonian systems can be found 

in [34] . 

In this paper, we deal with the existence of solutions to prob- 

lem (2) . First, in Section 2 , we give some preliminary definitions 

and recall some properties and results which are needed later. 

Then, in Section 3 , we establish and prove our main results on the 

existence of solutions to problem (2) . 

2. Preliminaries on fractional calculus 

To prove the main results, we need some preliminary notions 

and results which are recalled in this section. Here, we present 

briefly some basic notions corresponding to fractional calculus. The 

interested reader can find a detailed study in the monographs 

[35,36] , as well as other texts on basic fractional calculus, while 

some of the properties in this section have been also taken from 

the paper [37] . 

Definition 1 (Left and right Riemann–Liouville fractional deriva- 

tives [35,36] ) . Let f be a function defined on [ a, b ]. The left and 

right Riemann-Liouville fractional derivatives of order 0 ≤ γ < 1 

for function f , denoted respectively by a D 

γ
t f (t) and t D 

γ
b 

f (t) , are 

defined by 

a D 

γ
t f (t) = 

d 

dt 
a D 

γ −1 
t f (t) 

= 

1 

�(1 − γ ) 

d 

dt 

(∫ t 

a 

(t − s ) −γ f (s ) ds 

)
, t ∈ [ a, b] , (4) 

t D 

γ
b 

f (t) = − d 

dt 
t D 

γ −1 

b 
f (t) 

= − 1 

�(1 − γ ) 

d 

dt 

(∫ b 

t 

(s − t) −γ f (s ) ds 

)
, t ∈ [ a, b] . (5) 

Definition 2 (Left and right Caputo fractional derivatives [35] ) . Let 

0 < γ < 1 and f ∈ AC ([ a, b ]), then the left and right Caputo frac- 

tional derivatives of order γ for function f denoted respectively by 
c 
a D 

γ
t f (t) and 

c 
t D 

γ
b 

f (t) , exist almost everywhere on [ a, b ]. The frac- 

tional derivatives c 
a D 

γ
t f (t) and 

c 
t D 

γ
b 

f (t) are represented by 

c 
a D 

γ
t f (t) = a D 

γ −1 
t f ′ (t) 

= 

1 

�(1 − γ ) 

(∫ t 

a 

(t − s ) −γ f ′ (s ) ds 

)
, t ∈ [ a, b] , (6) 

c 
t D 

γ
b 

f (t) = −t D 

γ −1 

b 
f ′ (t) 

= − 1 

�(1 − γ ) 

(∫ b 

t 

(s − t) −γ f ′ (s ) ds 

)
, t ∈ [ a, b] . (7) 

It is known that, when γ = 1 , c 
a D 

1 
t f (t) = f ′ (t) , c 

t D 

1 
b 

f (t) = 

− f ′ (t) , t ∈ [ a, b ]. For α = 0 , c 
a D 

0 
t f (t) = 

c 
t D 

0 
b 

f (t) = f (t) , t ∈ [ a, b ]. 

Let C ∞ 

0 
([0 , T ]) be the set of all functions u ∈ C ∞ ([0, T ]) with 

u (0) = u (T ) = 0 and consider the norm || u || ∞ 

= max t∈ [0 ,T ] | u (t) | . 
We also consider the norm of the space L r ([0, T ]), for 1 ≤ r < ∞ , 

given by 

|| u || L r = 

(∫ T 

0 

| u (ξ ) | r dξ
) 1 

r 

. 

Definition 3 (Definition 3.1 [37] ) . Let 0 < α ≤ 1 and 1 < p < 

∞ . The fractional derivative space E 
α,p 
0 

is defined by the closure 

of C ∞ 

0 
([0 , T ]) , that is, 

E α,p 
0 

= C ∞ 

0 
([0 , T ]) 

||·|| α,p 

where 

|| u || α,p = 

(∫ T 

0 

| u (t) | p dt + 

∫ T 

0 

| c 0 D 

α
t u (t) | p dt 

) 1 
p 

. (8) 

Lemma 1 (Proposition 3.1 [37] ) . Let 0 < α ≤ 1 and 1 < p < ∞ . The 

fractional derivative space E 
α,p 
0 

is a reflexive and separable Banach 

space. 

The following estimates are useful to our procedure and they 

refer to an equivalent norm in the space E 
α,p 
0 

. 

Lemma 2 (Proposition 3.2 [37] ) . Let 0 < α ≤ 1 and 1 < p < ∞ . For 

all u ∈ E 
α,p 
0 

, we have 

|| u || L p ≤ T α

�(α + 1) 
|| c 0 D 

α
t u || L p . (9) 

Moreover, if α > 

1 
p and 1 

p + 

1 
q = 1 , then 

|| u || ∞ 

≤ T α− 1 
p 

�(α)((α − 1) q + 1) 
1 
q 

|| c 0 D 

α
t u || L p . (10) 

According to [37] , taking into account (9) , we can also consider 

E 
α,p 
0 

with respect to the equivalent norm 

|| u || α,p = || c 0 D 

α
t u || L p = 

(∫ T 

0 

| c 0 D 

α
t u (t ) | p dt 

) 1 
p 

, ∀ u ∈ E α,p 
0 

. (11) 

In the rest of the paper, we consider problem (2) in the context 

of the Hilbert space X α := E α, 2 
0 

, which can be equipped with the 

norm || u || α = || u || α, 2 defined in (11) . 

In what follows, we also assume that the coefficient mapping A 

satisfies the following conditions: 
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