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a b s t r a c t 

This paper investigates a new impulsive stochastic chemostat model with nonlinear perturbation in a 

polluted environment. We present the analysis and the criteria of the extinction of the microorganisms, 

and establish sufficient conditions for the existence of a unique ergodic stationary distribution of the 

model via Lyapunov functions method. The results show that both stochastic noise and impulsive toxicant 

input have great effects on the survival and extinction of the microorganisms. Moreover, we provide a 

series of numerical simulations to illustrate the analytical results. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The chemostat is a device for continuous culture of microor- 

ganisms in laboratory, many scholars have done a lot of work on 

the dynamics modeling and analysis of the chemostat, and many 

good results were obtained [1–14] . Moreover, impulsive stochastic 

differential equations [15–19] are used more and more widely, the 

biological models with impulsive effects were studied by a lot of 

scholars [20–25] . 
By learning from previous researches, we find that the satu- 

rated growth rate may be more suitable than bilinear growth rate 
for many cases, see [26,27] . And the toxicant in the air pollution 

and water pollution environment is a threat to the survival of 
the exposed microorganisms. Consequently, it is important to 
discuss impulsive chemostat model with saturated growth rate in 

a polluted environment [28–32] . In [1] , the author investigated a 
deterministic impulsive chemostat model with saturated growth 

rate in a polluted environment, this model is described by the 
following impulsive differential equation 
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⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d S(t) = 

(
Q(S 0 − S(t)) − μS(t ) x (t ) 

δ(a + x (t)) 

)
d t, 

d x (t) = 

(
μS(t ) x (t ) 

(a + x (t)) 
− Qx (t) − rC 0 (t ) x (t ) 

)
d t, 

d C 0 (t) = (kC e (t) − gC 0 (t) − mC 0 (t )) d t , 

d C e (t) = −hC e (t ) d t , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

t � = nτ, n ∈ Z + , 

�S(t) = 0 , �x (t) = 0 , �C 0 (t) = 0 , �C e (t) = u, t = nτ, n ∈ Z + , 

(1) 

where S ( t ) represents the concentration of the unconsumed nutri- 

ent at time t, x ( t ) represents the biomass of the population of mi- 

croorganism at time t, C 0 ( t ) and C e ( t ) denote the concentrations of 

the toxicant in the organism and in the environment at time t. Q 

is the washout rate, S 0 is the concentration of the growth-limiting 

nutrient, μ is the maximal growth rate, δ is the yield of the mi- 

croorganism x ( t ) per unit mass of substrate, a is the half-saturation 

constant with units of concentration, r is the rate of decrease of the 

intrinsic growth rate, k represents environmental toxicant uptake 

rate per unit mass organism, g and m are organismal net ingestion 

and depuration rates of toxicant, respectively, h denotes the loss 

rate of toxicant from the environment itself by volatilization, u is 

the amount of pulsed input concentration of the toxicant at each 

τ . And all the parameters are positive. 
As we know, the parameters of a system can be affected by en- 

vironmental noises [33–44] . Therefore, it is necessary to consider 
the effect of environmental noises. In this paper, we assume that 
fluctuations in the environment will manifest themselves mainly 
as fluctuations in the flow rate of the chemostat. Moreover, we use 
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nonlinear perturbation [45,46] for the flow rate of the chemostat. 
Then, an impulsive stochastic chemostat model with nonlinear 
perturbation in a polluted environment takes the following form ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d S(t) = 

(
Q(S 0 − S(t)) − μS(t ) x (t ) 

δ(a + x (t)) 

)
d t + S(t)(σ11 + σ12 S(t )) d W 1 (t ) , 

d x (t) = 

(
μS(t ) x (t ) 

(a + x (t)) 
−Qx (t) −rC 0 (t ) x (t ) 

)
d t+ x (t)(σ21 + σ22 x (t )) d W 2 (t ) , 

d C 0 (t) = (kC e (t) − gC 0 (t) − mC 0 (t )) d t , 

d C e (t) = −hC e (t ) d t , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

�S(t) = 0 , �x (t) = 0 , �C 0 (t) = 0 , �C e (t) = u, t = nτ, n ∈ Z + . 
× t � = nτ, n ∈ Z + , (2) 

For convenience, we first consider the following subsystem of sys- 

tem (2) ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

d C 0 (t) = (kC e (t) − gC 0 (t) − mC 0 (t )) d t , 

d C e (t) = −hC e (t ) d t , 

⎫ ⎬ 

⎭ 

t � = nτ, n ∈ Z 

+ , 

�C 0 (t) = 0 , �C e (t) = u, t = nτ, n ∈ Z + . 

(3) 

by Lemmas 2.1 and 2.2 of [1] , we have 

lim 

t→ + ∞ 

〈 C 0 (t) 〉 = 

ku 

h (g + m ) τ
� C̄ 0 . 

The paper is organized as follows. In Section 2 , we obtain 

some of the main results. First, we explore the conditions for the 

extinction of the microorganisms. Then, we establish sufficient 

conditions for the existence of an ergodic stationary distribution. 

In Section 3 , we provide a series of numerical simulations to 

illustrate the analytical results. 

2. Main results 

First, we give some notations, assumptions and some lemmas 

which will be used for our main results. Throughout this paper, 

unless otherwise specified, let (�, F , F t≥0 , P ) stand for a com- 

plete probability space with a filtration F t≥0 satisfying the usual 

conditions (i.e. it is increasing and right continuous where F 0 

contains all P -null sets). Define f l = inf t∈ R + f (t) , f u = sup t∈ R + f (t) , 

here f ( t ) is a bounded function on [0, ∞ ), 〈 f (t) 〉 = 

1 
t 

∫ t 
0 f (t) d s, 

where f ( t ) is an integrable function on [0, ∞ ). 

Assumption 2.1 [47] . There exists a bounded domain U ⊂ E d with 

regular boundary, then 

(A1) In the open domain U and some neighborhood thereof, 

the smallest eigenvalue of the diffusion matrix A ( x ) is bounded 

away from zero; 

(A2) If x ∈ E d �U , the mean time τ at which a path issuing from 

x reaches the set U is finite, and sup x ∈ K E x τ < ∞ for every compact 

subset K ⊂ E d . 

Remark 2.1. To validate (A1), we need to prove that there exists a 

positive constant M > 0 such that 

d ∑ 

i, j=1 

a i j (x ) ξi ξ j ≥ M | ξ | 2 , x ∈ U, ξ ∈ E d . 

To validate (A2), we need to prove that there exists a non-negative 

C 2 -function V and a neighborhood U such that, LV is negative for 

any E d �U . 

Assumption 2.1 is a general assumption which is the condition 

for the following Lemma 2.1 . 

Lemma 2.1. By Theorem 4.1 of [47] , if Assumption 2.1 holds, the 

Markov process X ( t ) has a stationary distribution μ( ·) . And 

P 

{
lim 

T →∞ 

1 

T 

∫ T 

0 

f (x (t)) d t = 

∫ 
E d 

f (x ) μ( d x ) 

}
= 1 , 

where f is an integrable function with respect to the measure μ. The 

proof is given in [47] . 

2.1. Extinction 

In this section, we explore the condition for the extinction of 

the microorganism, which implies microculture failed. 

Define 

R 

∗
0 = 

μ
a 

∫ ∞ 

0 xπ(x ) d x 

Q + r C̄ 0 + 

σ 2 
21 

2 

, 

where for x ∈ (0 , + ∞ ) 

π(x ) = Cx 
−2 − 2(2 Q S 0 σ12 + Q σ11 ) 

σ3 
11 (σ11 + σ12 x ) 

−2+ 2(2 Q S 0 σ12 + Q σ11 ) 

σ3 
11 

× e 
− 2 

σ11 (σ11 + σ12 x ) 
( 

QS 0 
x + 2 Q S 0 σ12 + Q σ11 

σ11 
) 
, (4) 

here, C is a constant such that 
∫ ∞ 

0 π(x ) d x = 1 . 

Theorem 2.1. Assume R ∗
0 

< 1 , let ( S ( t ), I ( t ), C 0 ( t ), C e ( t )) be the solu- 

tion of system (2) with any initial value (S(0) , I(0) , C 0 (0) , C e (0 + )) ∈ 

R 

4 + . Then 

lim 

t→ + ∞ 

I(t) = 0 a.s. 

Proof. First, we construct the following auxiliary equation 

d X (t) = [ Q S 0 − Q X (t)] d t + X (t)(σ11 + σ12 X (t)) d B 1 (t) , (5) 

with the initial value X(0) = S(0) > 0 . 

Let X ( t ) be the solution of Eq. (5) , then using the comparison 

theorem for stochastic differential equation, we get 

S(t) ≤ X (t) a.s. 

Setting 

a (x ) = Q S 0 − Q x, σ (x ) = x (σ11 + σ12 x ) , x ∈ (0 , + ∞ ) , 

then we compute the following indefinite integral 

∫ 
a (t) 

σ 2 (t) 
d t = 

∫ 
Q S 0 − Q t 

t 2 (σ11 + σ12 t) 2 
d t 

= 

∫ (
QS 0 

t 2 (σ11 + σ12 t) 2 
− Q 

t (σ11 + σ12 t ) 2 

)
d t 

= 

2 QS 0 σ12 

σ 3 
11 

ln 

σ11 + σ12 t 

t 
− QS 0 

σ11 t (σ11 + σ12 t ) 

− 2 QS 0 σ12 

σ 2 
11 

(σ11 + σ12 t) 
− Q 

σ11 (σ11 + σ12 t) 

+ 

Q 

σ 2 
11 

ln 

σ11 + σ12 t 

t 
+ C 

= 

2 Q S 0 σ12 + Q σ11 

σ 3 
11 

ln 

σ11 + σ12 t 

t 
− QS 0 

σ11 t (σ11 + σ12 t ) 

−2 Q S 0 σ12 + Q σ11 

σ 2 
11 

(σ11 + σ12 t) 
+ C. 

Hence 

e 
∫ a (t) 

σ2 (t) 
d t = e C 

(
σ11 + σ12 t 

t 

) 2 Q S 0 σ12 + Q σ11 

σ3 
11 e 

− 1 
σ11 (σ11 + σ12 t) 

(
QS 0 

t + 2 Q S 0 σ12 + Q σ11 
σ11 

)
. 

Next, we have 
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