The motor repertoire in 3- to 5-month old infants with Down syndrome

Dafne Herrero³,¹, Christa Einspieler²*,², Carolina Y. Panvequio Aizawa³, Akmer Mutlu⁴, Hong Yang⁵, Alice Nogolova⁶, Jasmin Pansy⁷, Karin Nielsen-Saines⁷, Peter B. Marschik²,³, GenGM Study Group

³ School of Public Health, University of São Paulo, São Paulo, Brazil
¹ Research Unit iDN, Interdisciplinary Developmental Neuroscience, Department of Phoniatrics, Medical University of Graz, Graz, Austria
² Department of Physical Therapy, Communication Science & Disorders and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
⁴ Developmental and Early Physiotherapy Unit, Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
⁵ Rehabilitation Department, Children’s Hospital of Fudan University, Shanghai, China
⁶ Children’s Department, City Hospital of Ostrava, Ostrava, Czech Republic
⁷ Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
⁸ Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
⁹ Center of Neurodevelopmental Disorders (KIND), Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden

ARTICLE INFO

Keywords:
Down syndrome
Fidgety movements
General movements
Infant
Motor optimality score

ABSTRACT

Background: Even though Down syndrome is the most common chromosomal cause of intellectual disability, studies on early development are scarce.

Aim: To describe movements and postures in 3- to 5-month-old infants with Down syndrome and assess the relation between pre- and perinatal risk factors and the eventual motor performance.

Methods and procedures: Exploratory study; 47 infants with Down syndrome (26 males, 27 infants born preterm, 22 infants with congenital heart disease) were videoed at 10–19 weeks post-term (median = 14 weeks). We assessed their Motor Optimality Score (MOS) based on postures and movements (including fidgety movements) and compared it to that of 47 infants later diagnosed with cerebral palsy and 47 infants with a normal neurological outcome, matched for gestational and recording ages.

Outcomes and results: The MOS (median = 13, range 10–28) was significantly lower than in infants with a normal neurological outcome (median = 26), but higher than in infants later diagnosed with cerebral palsy (median = 6). Fourteen infants with Down syndrome showed normal fidgety movements, 13 no fidgety movements, and 20 exaggerated, too fast or too slow fidgety movements. A lack of movements to the midline and several atypical postures were observed. Neither preterm birth nor congenital heart disease was related to aberrant fidgety movements or reduced MOS.

Conclusions and implications: The heterogeneity in fidgety movements and MOS add to an understanding of the large variability of the early phenotype of Down syndrome. Studies on the predictive values of the early spontaneous motor repertoire, especially for the cognitive outcome, are warranted.

What this paper adds: The significance of this exploratory study lies in its minute description of...
the motor repertoire of infants with Down syndrome aged 3–5 months. Thirty percent of infants with Down syndrome showed age-specific normal fidgety movements. The rate of abnormal fidgety movements (large amplitude, high/slow speed) or a lack of fidgety movements was exceedingly high. The motor optimality score of infants with Down syndrome was lower than in infants with normal neurological outcome but higher than in infants who were later diagnosed with cerebral palsy. Neither preterm birth nor congenital heart disease were related to the motor performance at 3–5 months.

1. Introduction

Even though Down syndrome is the most common chromosomal cause of intellectual disability, with 20–22 individuals per 10,000 births affected (e.g., Kurtovic-Kozaric et al., 2016; Loane et al., 2013), studies on early development are scarce. Infants with Down syndrome are known to be socially competent but show a delay in the acquisition of motor milestones and deficits in early gesture production (Grieco, Pulsifer, Seligsohn, Skotko, & Schwartz, 2015; Özcalsikan, Adamson, Dimitrova, Bailey, & Schmuck, 2016; Saito & Watanabe, 2016). As early as the first months of life they scored lower than typically developing infants on both the Test of Infant Motor Performance (Cardoso, Campos, Santos, Santos, & Rocha, 2015) and the Alberta Infant Motor Scale (Tudella, Pereira, Pedrolongo Basso, & Savelbergh, 2011). They kicked less often (Ulrich & Ulrich, 1995) and their arm movements were less accurate when reaching for objects of different sizes (de Campos, Cerra, Silva, & Rocha, 2014). Repeated assessments of their spontaneous general movements revealed a heterogeneous movement quality, although the fluency and complexity tended to improve between 1 and 6 months of age (Mazzone, Mugno, & Mazzone, 2004).

Initially designed for infants with acquired brain injuries, the Prechtl assessment of general movements (Einspieler & Prechtl, 2005; Prechtl et al., 1997) has recently also been applied to infants with genetic syndromes (Einspieler, Hirota, Yuge, Dejima, & Marschik, 2012; Einspieler, Kerr, & Prechtl, 2005; Einspieler et al., 2014; Marschik, Soloveichick, Windpassinger, & Einspieler, 2015; Mazzone et al., 2004) and infants later diagnosed with autism spectrum disorders (Einspieler et al., 2014; Zappella et al., 2015). The assessment is based on visual Gestalt perception of normal vs. abnormal movements in the entire body (i.e. general movements). It is applied in foetuses, preterm infants, and newborn infants from term to 5 months post-term (Einspieler, Prechtl, Bos, Ferrari, & Cioni, 2004; Prechtl & Einspieler, 1997). The excellent predictive power of general movement assessments (Bosanquet, Copeland, Ware, & Boyd, 2013; Einspieler et al., 2004) is mainly attributable to fidgety general movements, which occur from 3 to 5 months post-term age (Einspieler & Prechtl, 2005; Prechtl et al., 1997). Infants with normal fidgety movements are very likely to develop normally in neurological terms, whereas infants who never develop fidgety movements have a high risk for neurological impairment (Einspieler & Prechtl, 2005; Prechtl et al., 1997). Adding a detailed assessment of concurrent movements and postures to the assessment of fidgety movements, for example, showed a reduced motor optimality score (MOS) to be associated with a limited activity in children who were later diagnosed with cerebral palsy (Yang et al., 2012), or with lower intelligent quotients during school age (Butcher et al., 2009). We therefore assumed that determining the MOS (Einspieler et al., 2004, p. 26) by assessing fidgety movements as well as concurrent movement and postural patterns would enable us to systematically

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Clinical characteristics of 47 infants with Down syndrome.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age</td>
<td>Median = 35 years; $P_{25} = 31$ years; $P_{75} = 39$ years; range: 17–45 years</td>
</tr>
<tr>
<td>Paternal age</td>
<td>Median = 37 years; $P_{25} = 32$ years; $P_{75} = 42$ years; range: 23–50 years</td>
</tr>
<tr>
<td>Parity</td>
<td>Median = 2; $P_{25} = 1$; $P_{75} = 3$; range: 1–5</td>
</tr>
<tr>
<td>Pregnancy complications</td>
<td>22 (47%); 27 (57%)</td>
</tr>
<tr>
<td>Preterm birth</td>
<td>31 (66%)</td>
</tr>
<tr>
<td>Caesarean section</td>
<td>Median = 2585 g; $P_{25} = 2000$ g; $P_{75} = 2980$ g; range: 1400–3680 g</td>
</tr>
<tr>
<td>Birth weight</td>
<td>Median = 8; $P_{25} = 7$; $P_{75} = 8$; range: 6–10</td>
</tr>
<tr>
<td>Apgar Score at 1 min</td>
<td>Median = 9; $P_{25} = 8$; $P_{75} = 9$; range: 8–10</td>
</tr>
<tr>
<td>Apgar Score at 5 min</td>
<td>26 (55%); 22 (47%)</td>
</tr>
<tr>
<td>Hyperbilirubinaemia</td>
<td>CHD: (Atrio)ventricular septal defects and/or patent ductus arteriosus</td>
</tr>
<tr>
<td>Duration of mechanical ventilation</td>
<td>Median = 0 days</td>
</tr>
<tr>
<td>Age at discharge from the hospital</td>
<td>$P_{25} = 0$ days; $P_{75} = 3$ days; range: 0–19 days</td>
</tr>
<tr>
<td>Key: CHD, congenital heart disease.</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Clinical characteristics of 47 infants with Down syndrome.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات