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A B S T R A C T

The theoretical investigation of how spatial structure affects the evolution of social behavior has mostly been
done under the assumption that parent-offspring strategy transmission is perfect, i.e., for genetically
transmitted traits, that mutation is very weak or absent. Here, we investigate the evolution of social behavior
in structured populations under arbitrary mutation probabilities. We consider populations of fixed size N,
structured such that in the absence of selection, all individuals have the same probability of reproducing or
dying (neutral reproductive values are the all same). Two types of individuals, A and B, corresponding to two
types of social behavior, are competing; the fidelity of strategy transmission from parent to offspring is tuned by
a parameter μ. Social interactions have a direct effect on individual fecundities. Under the assumption of small
phenotypic differences (implying weak selection), we provide a formula for the expected frequency of type A
individuals in the population, and deduce conditions for the long-term success of one strategy against another.
We then illustrate our results with three common life-cycles (Wright-Fisher, Moran Birth-Death and Moran
Death-Birth), and specific population structures (graph-structured populations). Qualitatively, we find that
some life-cycles (Moran Birth-Death, Wright-Fisher) prevent the evolution of altruistic behavior, confirming
previous results obtained with perfect strategy transmission. We also show that computing the expected
frequency of altruists on a regular graph may require knowing more than just the graph's size and degree.

1. Introduction

Most models on the evolution of social behavior in structured
populations study the outcome of competition between individuals
having different strategies and assume that strategy transmission from
parents to their offspring is almost perfect (i.e., when considering
genetic transmission, that mutation is either vanishingly small or
absent). This is for instance illustrated by the use of fixation prob-
abilities to assess evolutionary success (e.g., Rousset and Billiard, 2000;
Rousset, 2003; Nowak et al., 2004; Nowak, 2006; Ohtsuki et al., 2006).
Yet, mutation has been shown to affect the evolutionary fate of social
behavior (Frank, 1997; Tarnita et al., 2009) and is, more generally, a
potentially important evolutionary force. Here, we explore the role of
imperfect strategy transmission—genetic or cultural—from parents to
offspring on the evolution of social behavior, when two types of
individuals, with different social strategies, are competing. We are
interested in evaluating the long-term success of one strategy over
another.

A population in which mutation is not close (or equal) to zero will

spend a non-negligible time in mixed states (i.e., in states where both
types of individuals are present), so instead of fixation probabilities, we
need to consider long-term frequencies to assess evolutionary success
(Tarnita et al., 2009; Wakano and Lehmann, 2014; Tarnita and Taylor,
2014). We will say that a strategy is favored by selection when its
expected frequency is larger than what it would be in the absence of
selection.

Obviously, lowering the fidelity of parent-offspring strategy trans-
mission—e.g., by increasing the probability of mutation—reduces the
relative role played by selection. But in a spatially structured popula-
tion, the fidelity of parent-offspring strategy transmission also affects
the spatial clustering of different strategies, and in particular whether
individuals that interact with each other have the same strategy or not;
this effect takes place even in the absence of selection. Consequently,
the impact of imperfect strategy transmission may differ according to
how the population is structured.

In this study, we consider populations such that, in the absence of
selection (when social interactions have no effect on fitness), all
individuals have equal chances of reproducing, and equal chances of
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dying. In other words, in such a population of size N, the neutral
reproductive value of each site is N1/ (Taylor, 1990; Maciejewski, 2014;
Tarnita and Taylor, 2014). We provide a formula that gives the long-
term frequency of a social strategy in any such population, for arbitrary
mutation rates, and for any life-cycle (provided population size remains
equal to N). This formula is a function of the probabilities that pairs of
individuals are identical by descent. These probabilities are obtained by
solving a linear system of equations, and we present explicit solutions
for population structures with a high level of symmetry (structures that
we call “n-dimensional graphs”). We finally illustrate our results with
widely used updating rules (Moran models, Wright-Fisher model) and
specific population structures.

2. Models and methods

2.1. Population structures

We consider a population of fixed size N, where each individual
inhabits a site corresponding to the node of a graph ; each site hosts
exactly one individual. The edges of the graph, d{ }ij i j N1≤ , ≤ , define where
individuals can send their offspring to. We consider graphs that are
connected, i.e., such that following the edges of the graph, we can go
from any node to any other node (potentially via other nodes). This
simply means that there are not completely isolated subpopulations.
Another graph, , with the same nodes as graph but with edges
e{ }ij i j N1≤ , ≤ , defines the social interactions between the individuals;
can be the same graph as , but does not have to be (Taylor et al.,
2007a; Ohtsuki et al., 2007; Débarre et al., 2014). The edges of the two
graphs can be weighted (i.e., dij and eij can take any non-negative
value) and directed (i.e., we can have d d≠ij ji or e e≠ij ji for some sites i
and j). For instance, dispersal in a subdivided population is represented
by a weighted graph (the probability of sending offspring to a site in the
same deme as the parent is different from the probability of sending
offspring to a site in a different deme.) Finally, we denote by D and E
the adjacency matrices of the dispersal and interaction graphs,
respectively ( dD = { }ij i j N1≤ , ≤ , eE = { }ij i j N1≤ , ≤ ).

Regular dispersal graphs In this study, we focus on dispersal
graphs that are regular, i.e., such that for all sites i, the sum of the edges
to i and the sum of the edges from i are both equal to ν:

∑ ∑d d ν= = ,
j

N

ij
j

N

ji
=1 =1 (1)

where ν is called degree of the graph when the graph is unweighted. All
the graphs depicted in the article (Figs. 1 and 3) satisfy Eq. (1), and
then are regular. Note that there is no specific constraint on the
interaction graph .

More detailed results are then obtained for regular graphs that
display some level of symmetry, that we now describe:

Transitive dispersal graphs A transitive graph is such that for
any two nodes i and j of the graph, there is an isomorphism that maps i
to j (Taylor et al., 2007a, 2007b): the graph looks the same from every
node. In other words, the dispersal graph is transitive when it is
“homogeneous” (sensu Taylor et al. (2007a)), i.e., when all nodes have
exactly the same properties in terms of dispersal. In Fig. 1, graphs (b)–
(e) are transitive. On the other hand, all the nodes of graph (a) are
different (for instance, node 9 is in a triangle while node 12 is not), so
this regular graph is not transitive.

Transitive undirected dispersal graphs A graph is undirected
if for any two nodes i and j, the weight of the edge from i to j is equal to
the weight of the edge from j to i (i.e., there is no need to use arrows
when drawing the edges of the graph). The dispersal graph is
undirected when for all sites i and j, d d=ij ji. In Fig. 1, graphs (b),
(c), (e) are both transitive and undirected.

“n-dimensional” dispersal graphs We call “n-dimensional
graphs” transitive graphs whose nodes can be relabelled with n-long

indices, such that the graph is unchanged by circular permutation of
the indices in each dimension (see Eq. (2)). We denote by the
ensemble of node indices: N N= {0,…, − 1}×…×{0,…, − 1}n1 , with

N N∏ =k
n

n=1 ; numbering is done modulo Nk in dimension k. Then for
all indices i, j and k of , node labeling is such that for all edges
(modulo the size of each dimension),

d d= .ij i k j k+ , + (2)

In Fig. 1, graphs (b) and (d) are 1-dimensional: we can label their
nodes such that the adjacency matrices are circulant. Graphs (c) and (e)
are 2-dimensional: the adjacency matrices are block-circulant, with
each block being circulant. In 1(c), one dimension corresponds to the
angular position of a node (N = 61 positions), and the other dimension
to the radial position of a node (N = 22 positions, inner or outer
hexagon). In 1(e), one dimension corresponds to the horizontal
position of a node (N = 41 positions) and the other to the vertical
position of a node (N = 32 positions). Condition Eq. (2) may sound
strong, but is satisfied for the regular population structures classically
studied, like stepping-stones (e.g., cycle graphs, lattices), or island
models (Taylor, 2010; Taylor et al., 2011).

2.2. Types of individuals and social interactions

There are two types (A and B) of individuals in the population,
corresponding to two strategies of social behavior. There are no mixed
strategies: an individual of type A plays strategy A, and individuals do
not change strategies. The indicator variable Xi represents the type of
the individual present at site i: Xi is equal to 1 if the individual at site i
is of type A, and Xi is equal to 0 otherwise ( X i= ( )i A ). A N-long vector
X gathers the identities of all individuals in the population, and X is the
population average of X (X X N= ∑ /i

N
i=1 ). The ensemble of all possible

states is Ω = {0, 1}N .
Individuals in the population reproduce asexually. Fecundities are

affected by social interactions, and are gathered in a N-long vector f.
We assume that the genotype-phenotype map is such that the two types
A and B are close in phenotype space: the individual living at site i
expresses a phenotype δXi, with δ⪡1 (a feature called “δ-weak selection”
by Wild and Traulsen (2007)).

An individual's fecundity depends on the phenotypes of the
individuals it interacts with and on its own phenotype (δXi for the
individual at site i). Without loss of generality, we can write the
fecundity of the individual living at site i as

Fig. 1. Examples of regular graphs of size 12. The graphs on the first line are unoriented
and unweighted graphs of degree ν = 3, Graph (d) is oriented, graph (e) is weighted. (a) is
the Frucht graph, and has no symmetry. Graphs (b) and (d) are one-dimensional, graphs
(c) and (e) are two-dimensional (see main text).
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