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a b s t r a c t

Numerical simulation of melting processes is known to be tricky yet due to new application fields they
raise again the attention of both, researchers and engineers. Several approaches were developed to solve
this moving boundary problem, fixed grid methods being the most widespread ones. However, up to
now no holistic and quantitative comparison, even of the most common enthalpy methods (some of
these being included in famous commercial software), exists. Therefore, within this work, an exhaustive
study is performed to evaluate the corresponding accuracy of the five most used macroscopic energy
formulations with a strong coupling between temperature and enthalpy. In addition to pure conductive
cases with analytical solution, an experimental test including natural convection is considered. Thus, the
influence of the time step, of the grid and of the tolerance within the energy equation are investigated. In
the same way several thermodynamical modelings are considered: either isothermal or non-isothermal
phase change, several temperature ranges being used in this later case. From the more than 2500
simulations obtained, painstaking quantitative error analysis are conducted and quality thresholds are
defined. Generally, approaches formulated in terms of enthalpy appear to be more robust than the ones
using temperature formulations instead. The popular effective heat capacity method (with iterative
correction) leads to the largest errors when considering the complete enthalpy in the convection term.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Solid-liquid phase-change is known to be overspread in the
nature or in human activities, e.g. casting and welding, production
of high quality metals or alloys, energy storage. However, it is also
known to be a tough problem since it rises both fundamental and
numerical issues, as for example when one seeks to write the
modeling equations governing such a situation or, for a given set of
partial differential equations, when one tries to solve them. For
these twomain reasons, this topic hasmotivated numerous studies,
be it experimental, theoretical or numerical ones. Indeed, for a good
control of the processes, it is often mandatory to have some
knowledge about the composition of either the liquid or the solid
phase (concentrations of various species) and their behavior (con-
duction or convection regime, dendrites structures …), about the
interface position (and sometimes of the associated morphology),
about the temperature field and the corresponding heat fluxes

(mainly at the boundaries), etc.
From a mathematical point of view, the solid-liquid transition is

referred as a moving boundary problem and due to this interface
movement, it is non linear. Indeed, the position and velocity of the
solid-liquid interface cannot be calculated analytically because it
depends on the time but also since there is a strong coupling be-
tween the velocity and the temperature fields. Moreover, the
equation of state linking the enthalpy to the temperature is rather
complicated, especially when a discontinuity is present (this will be
further discussed later), and the associated equations are difficult to
handle. Since the study of the crust formation of Earth by Lam�e and
Clapeyron [1],1 or the ice formation problem of Stefan [4], some
solutions have been proved to exist in the limiting cases of constant
properties and conduction in the liquid phase only [4] or conduc-
tion in both the liquid and solid phases [5]. Although a similarity
solution seemed to have been proposed by Neumann in some of its
lectures, the first proof of existence and uniqueness of the solution
for the one-dimensional Stefan problem seems to be due to

* Corresponding author.
E-mail address: erwin.franquet@univ-pau.fr (E. Franquet). 1 which, by the way, was approximated as a 1D infinite problem [2,3].
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Rubinstein [6] and then it has been shown that a general solution
exists for non-constant properties [7], and its uniqueness was
proven [8]. Some other fundamental aspects have been discussed
for the multi-dimensional case [9e15]. Lastly, an exact solution for
non-isothermal transitions has been proposed [16]. For a more
general overview of the historical state of progress, one may have a
look at Rubenstein [ [17], pp 1e15 of the Introduction] concerning
the mathematical considerations and at Crank [[18], section 1.3, pp
1e29] for the various Stefan-type problems and at Crank [ [18], p2]
to have an overview of literature surveys concerning the Stefan
problem. For a more specific historical review, see Yao and Prusa [
[19], section II. A, pp 4e5] for a description of the seminal studies
and also for the progressive incorporation of convection in phase-
change problems [ [19], section III.A.1, pp 44e49], and [20] for a
complete biography of Jo�zef Stefan and historical roots of its nine
problems. Finally, an exhaustive synthesis of analytical and
approximated solutions for such problems is given by Tarzia [21].

Concerning the physical and numerical modelings, many pos-
sibilities are available, with their own advantages and disadvan-
tages. To give a brief summary, one can rely on pure fluid equations
or on a multiphase approach. Thus, when one turns to the nu-
merical solving of a solid-liquid phase-change problem, it is com-
mon to divide the schemes into two main families: the multi-
domain or 2-domain, or variable domain methods, and the one-
domain, or fixed-grid methods (FGM) or P (physical)-grid
methods (PGM). It is also worth mentioning that two other classes
of methods exist, that cannot fit perfectly this taxonomy, namely
the meshfree or meshless methods and the lattice Boltzmann
methods. The present paper will restrict to FGM since it is clearly
the most used approach, and because of the huge numerical issues
already involved with such a “basic” model.

The multi-domain methods belong to the sharp interface
methods family and can therefore be separated into the moving
grid methods (MGM) and into Eulerian methods. With MGM, or r-
methods (for relocation-method), the mesh is deformed so as to
follow the interface during its displacement, the corresponding
velocity used to move the grid may be that of the fluid (Lagrangian
methods) or an arbitrary one (Arbitrary-Lagrangian-Eulerian -ALE-
methods2). With Eulerian methods, a fixed grid is used jointly with
a method to either follow or reconstruct the interface. In the first
case, the front tracking methods (FTM), the interface is explicitly
followed and consequently liquid and solid phases are clearly
separated, the interface movement being governed by the energy
balance which corresponds to a boundary condition for the two
phases. This interface tracking may be based either on a surface
tracking or on a volume tracking. In the second case, the front
capturing methods (FCM), the interface is now implicitly followed
thanks to a new equationwhich permits to reconstruct its position.
These methods being closed to or having been used jointly with
FGM, a brief description is proposed. In summary, there are two
main ideas underlying these approaches. Firstly, the interface is
nowdiffuse, because of themodeling or due to numerical smearing.
Secondly, this thick front is used to propose a macroscopic
description of the interface including microscopic phenomenon. In
phase field methods (PFM) [22], a continuous and fast variation of
properties is supposed across the interface, i.e. from the two bulk
values for the solid and liquid phases. Then, the interface is iden-
tified through a phase-field variable, usually called f, which obeys a
new PDE, not necessarily based on or respecting physical principles
(especially thermodynamical ones) even if it would be preferable.
Generally, f is involved in a free energy equation which is

minimized. To have a more complete overview, one may have a
look at [ [23], chap.11, pp.366e378] or [24],3 or even to [25e28] to
find a review of various PFM and enlightening explanations and
examples. In volume-of-fluid (VOF) methods [29] and level-set
methods (LSM) [30e32], the function used to position the inter-
face is not unavoidably a physical variable but a numerical one, the
color or distance function. These methods being clearly more used
for liquid/gas change of phase, they are not detailed any further. In
the third case, the mapping methods (MM) or T-grid methods, for
transformed-grid methods (TGM), a new function is used to
transform the curved domain containing the interface into a
domain with a regular shape. This permits to immobilize the
moving boundary on a uniform and fixed grid. In the last case (less
common), the front-fixing methods (FFM), the idea is to have an
adaptable space step or time step so as to have the interface always
lying on a mesh point or line or to have it moving completely across
a cell during one temporal iteration. For more precise information
or descriptions of the previous methods, and a thorough analysis of
their advantages and drawbacks, one can have a look at the cor-
responding literature [26,33e62].

The one-domain methods aim at solving a complete and unique
system of partial differential equations on the entire domain. This
set of equations may be based on a multi-phase approach (two-
fluid models), with some non-equilibrium or equilibrium as-
sumptions, or on a one-phase approach (one-fluid models) corre-
sponding to an homogeneous equivalent fluid, each one beingmore
appropriate to deal with a certain feature of the solid-liquid tran-
sition and requiring more or less human and computational efforts.
Since the PDE are valid in the whole domain, special treatment will
be needed to cancel the velocity in the solid state, the various
available techniques being presented in section 2. Concerning the
interface, it is not necessary anymore to track it, neither explicitly
nor implicitly, and no remeshing is required. Moreover, these
methods are simpler to implement and rely on less human and
computational efforts. Eventually, they can deal relatively easily
with complex multi-dimensional problems and with the dynamic
appearance/disappearance of multiple interfaces. A complete pre-
sentation and description of the non-equilibrium models is out of
scope of the present article and consequently the interested reader
will be referred to some fundamental references [46,54,57,63e81].
Concerning the corresponding disadvantages, they will be pre-
sented later, when describing the various classes of FGM for one-
fluid models in section 2. Indeed, these can be subdivided into
the enthalpy-based formulations or temperature-based formula-
tions.4 The first one contains the enthalpy method which corre-
sponds to the usual energy equation and the total enthalpy method
which uses a transformation to write the Fourier's law in function
of the enthalpy. The second one contains the source based method
(or fictitious heat flow), where the latent heat is incorporated
thanks to a source term in the right-hand side (RHS) of the energy
equation, and the apparent or effective heat capacity methods,
where the latent part of the energy is included in a revised form of
the heat capacity. Some more complete analysis and descriptions

2 n.b.: then an other important step is required so as to remap the domain: the
rezone phase, which can be based on a p-, h- or r-adaptation (the most common).

3 In spite of the solidification-oriented titles, interesting informations are avail-
able here.

4 n.b.: The heat balance integral method (HBIM) [82e84], which consists in using
polynomials to fit the temperature fields in the solid and liquid phases so as to
permit an integration of the PDE to obtain ordinary differential equations (ODE)
easier to solve, and the freezing index method [85e87], which consists in trans-
forming the variable so as to have a continuously differentiable function together
with an homographic approximation, and the discontinuous integration method
[88e90], which consists in separating the integration of the enthalpy together with
adding a supplementary degree of freedom to account for the interface location
inside an element, will not be discussed since they are not used anymore nowadays.
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