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a b s t r a c t 

There is a growing interest in the travel behaviour modelling community in using alterna- 

tive methods to capture the behavioural mechanisms that drive our transport choices. The 

traditional method has been Random Utility Maximisation (RUM) and recent interest has 

focussed on Random Regret Minimisation (RRM), but there are many other possibilities. 

Decision Field Theory (DFT), a dynamic model popular in mathematical psychology, has 

recently been put forward as a rival to RUM but has not yet been investigated in detail 

or compared against other competing models like RRM. This paper considers arguments in 

favour of using DFT, reviews how it has been used in transport literature so far and pro- 

vides theoretical improvements to further the mechanisms behind DFT to better represent 

general decision making. In particular, we demonstrate how the probability of alternatives 

can be calculated after any number of timesteps in a DFT model. We then look at how 

to best operationalise DFT using simulated datasets, finding that it can cope with under- 

lying preferences towards alternatives, can include socio-demographic variables and that 

it performs best when standard score normalisation is applied to the alternative attribute 

levels. We also present a detailed comparison of DFT and Multinomial Logit (MNL) models 

using stated preference route choice datasets and find that DFT achieves significantly bet- 

ter fit in estimation as well as forecasting. We also find that our theoretical improvement 

provides DFT with much greater flexibility and that there are numerous approaches that 

can be adopted to incorporate heterogeneity within a DFT model. In particular, random 

parameters vastly improve the model fit. 

© 2017 Elsevier Ltd. All rights reserved. 

1. An introduction to decision field theory 

Random Utility Maximisation (RUM) models have dominated the field of choice modelling for over 40 years 

( McFadden, 20 0 0 ), particularly in travel behaviour research ( Ben-Akiva and Bierlaire, 1999 ). Recently, however, there has 

been increasing interest in using alternative methods to make the models flexible to accommodate departures from be- 

haviours assumed under RUM. A key example in transport research has been Random Regret Minimisation ( Chorus et al., 

2008; Chorus, 2010 ), which assumes that decision-makers seek to minimise negative emotions rather than maximising pos- 

itive ones. Another example comes in the form of Bayesian Belief Networks ( Parvaneh et al., 2012 ), which take a more 

heuristic approach, looking at an individual’s past experiences and expectations about the different alternatives available. 
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Whilst these new methods both make more of an effort to consider the underlying cognitive processes in decision 

making, another model, Decision Field Theory ( Busemeyer and Townsend, 1992; 1993 ), was designed purely as a cognitive 

model to capture the deliberation process in decision making. Decision Field Theory (DFT) is a stochastic-dynamic model 

of decision-making behaviour, which was expanded to include multi-attribute ( Diederich, 1997 ) and then multi-alternative 

decision-making ( Roe et al., 2001 ), where it was renamed multi-alternative decision field theory (MDFT). 1 

Due to the psychological roots of DFT ( Busemeyer and Diederich, 2002 ), it has predominantly been used to explain 

behaviour not typically studied using ”traditional” choice models. DFT can theoretically explain similarity, attraction and 

compromise effects ( Roe et al., 2001 ) and this has largely been the focus of DFT research with many papers looking into how 

well it can explain these context effects compared to other models ( Tsetsos et al., 2010; Trueblood et al., 2013; Noguchi and 

Stewart, 2014 ). It is of course true that RUM models can also be used to test such effects, with notably Nested Logit being 

used to study the similarity effect ( Guevara and Fukushi, 2016 ) or preference reversals ( Batley and Hess, 2016 ). However, 

Decision Field Theory further differentiates from these models by being a dynamic model. This means that it can successfully 

be used to study risky choices or the effect of time pressure ( Busemeyer and Townsend, 1993; Diederich, 1997; Dror et al., 

1999 ). Despite the success of DFT in explaining time and context effects, it has not often been used to explain riskless 

choices or decision making in general. 

We address this research gap in this paper by providing theoretical improvements to further the mechanisms behind 

DFT to better represent general decision making, incorporating potential effects of socio-demographic variables and accom- 

modating for heterogeneity. The models are rigorously compared against RUM and RRM, both for estimation and prediction, 

using simulated and real datasets. 

The remainder of this paper is organised as follows. The next section provides a comprehensive review of DFT: how it 

works, comparisons with other models and arguments in favour of using DFT. Section 3 gives our theoretical improvements 

for DFT. Section 4 presents the data and looks at our results from using DFT and Section 5 presents some conclusions. 

2. Overview of decision field theory 

Thus far, Berkowitsch et al. (2014) have provided the only comparison of DFT against mainstream choice models. As far 

as we are aware, DFT has never been compared to RRM or other alternative models from choice modelling, nor have the 

predictive capabilities of DFT been tested. We do not yet know if specific types of choices will be better explained by DFT 

or if certain decision-makers may be better represented by a DFT model. 

In the following subsection, a summary is provided for the basic mechanisms of DFT. We then consider arguments in 

support of DFT and look further into how it has been used so far in transport research. We conclude by looking at how DFT 

has been compared to RUM thus far. 

2.1. Mechanisms of decision field theory 

Basic mechanism 

The main idea behind Decision Field Theory is that each available alternative has a ‘preference value’, which updates over 

time. At each step, the current values are multiplied by a ‘feedback matrix’ before then adding on a valence vector (which 

can be considered as a utility at a specific moment) at that time. In its most basic form, we have: 

P t = S · P t−1 + V t , (1) 

where P t is a column matrix containing the current preference values for each alternative at time t, and S is a feedback ma- 

trix which contains three parameters (see Section 2.1 ). P t−1 is the previous preference vector and P 0 is the initial preference 

vector. This is often assumed to be [0, .., 0] ′ ( Busemeyer and Diederich, 2002 ). Finally, V t is the random valence vector at 

time t, given by: 

V t = C · M · W t + ε t , (2) 

where C is a contrast matrix, used to compare alternatives against each other, with c i,i = 1 and c i, j � = i = −1 / (n − 1) , where 

n is the number of alternatives, and M is the attribute matrix. DFT is scale-variant ( Busemeyer and Diederich, 2002 ) and 

we explore the implications of failing to ensure that the attribute matrix has been appropriately scaled in Section 4.3 . At 

each time, t, one attribute is attended to, such that W t = [0 .. 1 .. 0] ′ with entry j = 1 if and only if attribute j is the attribute 

currently being attended to. The probability of attending to attribute j is w j . Since these weights must sum to one, a standard 

uniform distribution X ∼ U (0, 1) can be used to select which attribute a decision-maker attends to at each timestep. It is 

assumed that there is no relationship between the timesteps, which means an attribute could be considered for several 

consecutive timesteps before the decision-maker considers a different attribute. There is also a random error vector, ε t = 

[ ε ..ε ] ′ , with ε ∼ N (0, s ) added on to allow for flexibility in the variation of probability values that DFT predicts. The variance 

for the error, s , is often fixed to 1 ( Trueblood et al., 2014 ) but can also be an estimated parameter. 

1 Some authors refer to decision field theory as DFT, others use MDFT. We shall henceforth use DFT. 
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