
Computer Languages, Systems & Structures 52 (2018) 1–20

Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

journal homepage: www.elsevier.com/locate/cl

Towards a completely extensible dynamic geometry software

with metadata

Davorka Radakovi ́c

∗, Ðor đe Herceg

University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics, Trg Dositeja Obradovi ́ca 4, 210 0 0 Novi Sad,

Serbia

a r t i c l e i n f o

Article history:

Received 27 April 2017

Revised 8 November 2017

Accepted 13 November 2017

Available online 22 November 2017

MSC:

68N19

PACS:

89.20.Ff

Keywords:

Source code annotations

Metadata

Dynamic geometry software

Component development

Functional languages

Lazy evaluation

a b s t r a c t

Dynamic Geometry Software (DGS) are widely accepted as tools for creating and pre-

senting visually rich interactive teaching and learning materials, called dynamic drawings.

Dynamic drawings are specified by writing expressions in functional domain-specific lan-

guages. Due to wide acceptance of DGS, there has arisen a need for their extensibility, by

adding new semantics and visuals. We have developed the SLGeometry dynamic geometry

software with a genericized functional language and the corresponding expression evalu-

ator that act as a framework into which specific semantics is embedded in the form of

code annotated with metadata. SLGeometry is implemented in C# on the .NET Framework.

Although attributes are a preferred mechanism to provide association of declarative infor-

mation with C# code, they have certain restrictions which limit their application to rep-

resenting complex structured metadata. By developing a metadata infrastructure which is

independent of attributes, we were able to overcome these limitations. Our solution, pre-

sented in this work, provides extensibility to simple and complex data types, unary and bi-

nary operations, type conversions, functions and visuals, thus enabling developers to seam-

lessly add new features to SLGeometry by implementing them as C# classes annotated

with metadata. It also provides insight into the way a domain specific functional language

of dynamic geometry software can be genericized and customized for specific needs by ex-

tending or restricting the set of types, operations, type conversions, functions and visuals.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Metadata and techniques such as metaprogramming, attribute-oriented programming and component-object program-

ming are widely used in last decades [1–4] . Attribute-oriented programming is a program-level marking technique that

allows developers to declaratively enhance programs through the use of metadata. Developers can mark program elements

(e.g. classes, interfaces, methods, fields) with attributes (annotations) to indicate that they maintain application-specific or

domain-specific semantics [5–7] . The existence of attributes can be checked at runtime and actions taken depending on

their values. Besides providing data which have an effect on the runtime program behavior, they are used as the indication

to developers about the aim and the behavior of the tagged code. Component software design has experienced enormous

benefits from the re-usability point of view [8,9] .

∗ Corresponding author.

E-mail addresses: davorkar@dmi.uns.ac.rs (D. Radakovi ́c), herceg@dmi.uns.ac.rs (Ð. Herceg).

https://doi.org/10.1016/j.cl.2017.11.001

1477-8424/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cl.2017.11.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2017.11.001&domain=pdf
mailto:davorkar@dmi.uns.ac.rs
mailto:herceg@dmi.uns.ac.rs
https://doi.org/10.1016/j.cl.2017.11.001

2 D. Radakovi ́c, Ð. Herceg / Computer Languages, Systems & Structures 52 (2018) 1–20

Metadata is data about data in computer science and can be interpreted in different ways according to needs. When

observed in object-oriented programming, it is the information about the program structure itself [10] . Metadata can be

used in various scopes: it started with metadata in public digital libraries [11] , pedagogical metadata for learning objects

(LO) [12,13] , metadata for ontology description and publication [14] , metadata in social-networks [15,16] , metadata in DSL

[17,18] , up to database systems [19] . Metadata standards are introduced for simple and generic resource descriptions [20] .

Dynamic Geometry Software (DGS) [21–28] is a software that enables creation and real-time manipulation of visually rich

interactive teaching and learning materials, called dynamic drawings . Dynamic drawings are specified by writing expressions

in a functional domain-specific language (abbreviated: FLG) and assigning them to named variables. In that regard, the set of

variables can be considered equivalent to the drawing it represents. The set of types (T), type conversions (C), operations (O),

functions (F) and visuals (V) in the FLG is denoted with τ = { T , C, O, F , V } . A DGS consists of an expression evaluator (Engine)

and a front end which displays dynamic drawings on the screen (GeoCanvas). Visual objects (visuals) are declaratively bound

to certain types, and the DGS takes care of drawing them on the GeoCanvas. If a visual exists that corresponds to the

constant type obtained by evaluating a variable, that visual appears on the screen. Some objects are dependent on other

objects, i.e. their expressions contain variable references. For example, a segment is defined by its two endpoints. Whenever

an endpoint is moved, the segment also moves. The Engine can also make use of a Computer Algebra System (CAS) [29–

32] to manipulate and transform expressions.

A DGS is implemented in a host language (HL) [33] such as Java or C#. FLG types, functions and operations, as well as

visuals, are written as HL classes which conform to some pre-established contracts. For example, all function classes must

implement the Eval() method. It is possible to use the DGS directly from the HL, by programmatically creating expressions

and calling the Engine API. In that sense, the FLG can be considered a language extension of the HL [18,34] , since its classes

are compiled with the unmodified HL compiler. Usually, however, the FLG is used as a standalone language inside a dedi-

cated DGS, which provides at least two ways of entering expressions: by textual input through a parser, or by using drawing

tools in the graphical user interface (GUI). From this point on, we shall consider C# as the HL of choice.

Dynamic geometry software has made a significant impact on the way geometry is taught in schools [35] . Creation of

geometric drawings, that was once a tedious process, has become easy and available to anyone with even a modest personal

computer. In time, teachers started using DGS to create teaching and learning materials for subjects other than geometry.

Many examples in the subjects of geography [36] , numerical analysis [37,38] , combinatorics, architecture, mechanical engi-

neering etc. can be found, see for example GeoGebraTube [39] . In time, two shortcomings of the current DGS have come to

our attention.

First, DGS are not well suited for universal application, as they mostly contain geometric objects and functions that oper-

ate on them. [40] supports this viewpoint, arguing that majority of available computer-aided teaching materials in geometry

are oriented towards fundamental problems in elementary and secondary school mathematics. The authors employed the

GeoGebra DGS [26] , supplemented with a professional-grade 3D modeling software Rhinoceros, to present and solve an ar-

ray of practical engineering problems. In our paper [36] we successfully applied GeoGebra to solving geographical problems,

but this effort resulted in very complex dynamic drawings. This is common occurrence, because many simple geometric

shapes need to be combined to represent complex visual objects. The number of those objects and their respective variables

can quickly become overwhelming for the user.

Second, geometric objects in DGS carry within them only the minimal necessary amount of data. Additional properties

of objects are calculated by applying separate functions to those objects. This way, expressions are light and efficiently eval-

uated. For example, a constant which represents a linear segment between two points carries only the data for the two

points. The midpoint of the segment is calculated only if needed, by using the Midpoint function. One significant disad-

vantage of this approach is function namespace congestion, because Midpoint shares the same namespace with numerous

other functions, although it is limited to a very specific argument type and purpose. This issue becomes pronounced as

more geometric objects are added to DGS, because each new object type can have many properties, which all require sepa-

rate functions to be imported into τ . The other problem affects HL developers of DGS, who have to know the current state

and anticipate the future functions in τ and invest additional work to avoid name clashes or provide overloads.

There are two choices posed before the developers who wish to extend a DGS with new features: either try to include

as many different visual objects and corresponding functions into a DGS as possible, or provide an extensibility mechanism,

such as plug-ins, and defer the development of new features to plug-in authors. It is evident in GeoGebra and other DGS

that many new functions, visual shapes and other functionalities are added in each new version, for example see [40] or

[41] .

Having this in mind, our aim was to create such a DGS, which would mitigate the aforementioned problems. We created

a generalized extensible DGS SLGeometry in C# on the .NET Framework, in order to observe the design requirements of

such a software and propose a viable implementation of the extensibility framework based on metadata. We have set the

following goals:

1. Objects must be unified with their properties, so that they can be implemented together in HL, and property access must

be realized without the need for separate functions;

2. An extensibility mechanism, such as plug-ins, must be devised for the DGS, which would enable adding new types,

operations, functions and visuals to τ ;

3. There must be no differences in treatment of built-in and imported members in τ ;

https://isiarticles.com/article/125628

