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a b s t r a c t

Let Gσ = (V , E, σ ) be a connected signed graph. Using the equivalence between signed
graphs and 2-lifts of graphs, we show that the frustration index of Gσ is bounded from be-
low and above by expressions involving another graph invariant, the smallest eigenvalue
of the (signed) Laplacian of Gσ . From the proof, stricter bounds are derived. Additionally,
we show that the frustration index is the solution to a l1-norm optimization problem over
the 2-lift of the signed graph. This leads to a practical implementation to compute the frus-
tration index. Also, leveraging the 2-lifts representation of signed graphs, a straightforward
proof of Harary’s theorem on balanced graphs is derived. Finally, real world examples are
considered.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A signed graph is defined as a graph Gσ = (V , E, σ ) for which a sign function σ : E → {−1,+1} is defined over the
edges. Such graphs appear naturally in fields such as sociology or systems biology. In sociology, it may describe relationships
between individuals, whereby the relations can be ‘‘friendly’’ and ‘‘unfriendly’’. In systems biology, those graphs, called
biological networks, describe activation or inhibition between molecules, typically enzymes, proteins or genes. Unless
specifically stated, all the graphs considered in the following are assumed to be connected and undirected.

Balance in a signed graph is characterized by the property that every path between two nodes have the same sign (the
sign of a path is the product of its edge signs). Equivalently, a graph is balanced if and only if every cycle is positive. In
sociology, it is thought [7], that relationship graphs tend to be balanced (individuals tend to form complementary alliances).

In systems biology, linearization of dynamical systems between molecules around a given state leads to signed graphs:
assume that a dynamical system is described by a set of n-differential equations.

∂x
∂t

= f (x(t)).

When linearized around a state x0, the signs of the Jacobian of the system define a signed graph. Monotone dynamical
systems are systems whose behaviors are simple (as opposed to oscillatory or chaotic solutions). It has been shown [6] that
a dynamical system is monotone if and only if the underlying undirected signed graph is balanced.

The minimum number of edges to delete in a sign graph Gσ = (V , E, σ ) to make the resulting graph balanced is
called the frustration index [10] and will be denoted by F (Gσ ). A signed graph has therefore a zero frustration index if
and only if it is balanced. This index indicates how far a graph is from being balanced and has attracted much attention
through sociology [11,7] and systems biology [16,15,23,22]. Algorithms and inequalities were established for estimating
the frustration index [16,15,14,27,8,29]. Moreover, the size of modern signed graphs (hundreds or thousands of nodes and
edges) makes the finding of a minimal set of edges whose deletion leads to a balanced graph challenging (this task is known
to be a NP-hard problem).
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Simple bounds have been established. For example, if the graph has n nodes and m edges, then m − n + 1 is an upper
bound for the frustration index (it follows from the deletion of all the edges, not belonging to a given spanning tree). Another
upper bound is given by (m −

√
m)/2 (see e.g., [16]).

The signed adjacency matrix of Gσ , A(Gσ ), is defined as an operator on l2(V ) by Axy = σ(x, y) if x and y are adjacent and
0 else. The signed Laplacian of Gσ is defined as L(Gσ ) = D(Gσ ) − A(Gσ ) where D(Gσ ) is the diagonal matrix whose entries
are the degrees of the vertices in (V , E) (here, the degree in a signed graph is defined as the degree in the classical sense
for the underlying unsigned graph). If the sign function is constant and positive, L(Gσ ) is the combinatorial Laplacian of
the undirected unsigned graph (V , E). Also, the resulting graph will be denoted by G+; similarly when the sign function
is constant and negative, the notation G− will be used. Finally, the spectrum of L(Gσ ), Sp(L(Gσ )), will be denoted by
0 ≤ µ1 ≤ · · · ≤ µn and the spectrum of an unsigned graph (V , E) by 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, where n = |V |

(λ0 = 0 as the constant functions in l2(V ) are in the kernel of L(G)).
In spectral graph theory, the combinatorial Laplacian is leveraged to characterize graph properties through spectral

properties of this matrix [5]. As a simple example, the number of connected components of a graph (V , E) is equal to the
multiplicity of λ0. Another example is the relationship between the Cheeger constant of a graph and its first non-vanishing
eigenvalue λ1, called Cheeger inequalities [5]. Expander graph is another graph property linked to the spectrum of the
Laplacian.

By considering the signed Laplacian, attempts to establish spectral bound on the frustration index or related graph
invariants have been proposed [9,2,13,12,17,1]. However, no direct spectral upper bound has been derived for the frustration
index. Lift of graphs have been considered in connection with graph spectral gap [3] to construct expander graphs.

In [19], cause-and-effect biological network models are used to quantify biological network response to a treatment in a
cell system, by using gene expression experimental data. This approach requires the signed graph underlying the network to
be balanced. In a subsequent work [25], some unbalanced networks were manually curated by biological experts to lead to
balance by deleting some edges. However, complex networks such as the Oxidative Stress and Cell cycle network could not
be curated manually [24], which may prevent the use of the methodology in [19]. Therefore, finding the maximal balanced
subgraph by deleting edges is of particular interest.

The manuscript is organized as follows: In Section 2, we recall the definition and some basic facts about graph 2-lifts.
In Section 3, we use those notions to derive straightforward proofs of some known theorems on graph balance. We then
establish a spectral upper and lower bound for the frustration index. Leveraging the proof of themain theoremof the section,
we show that the frustration index can be formulated as an optimization problem over l1-functions. Finally, the frustration
for real-life networks is analyzed in Section 4.

2. 2-lifts of graphs

In this section we recall the definition and some basic facts about 2-lift (or lift for short) of graphs. As a convention, we
assume that there are no self-loops in the graphs considered and that graphs are connected.

Definition 2.1. Let G = (V , E) be a graph. A 2-lift of G is a graph Ĝ = (V̂ , Ê) whose vertices are given by V̂ = V+ ⨿ V−,
V+

∼= V−
∼= V and where each edge (x, y) of G is lifted to two edges of Ĝ: either {(x+, y+), (x−, y−)} or {(x−, y+), (x+, y−)}.

The natural surjective homomorphism between Ĝ → G is called the lift-map.

The adjacency matrix of Ĝ, Â, has a block structure
A1 A2
A2 A1


where A1 contains the edges within V+, and V− and A2 the edges between V+ and V−. It is straightforward to note that the
adjacency matrix of G, A(G) is given by A1 + A2. There is an obvious equivalence between the set of 2-lifts of a graph and
the set of all signings of that graph. If σ is the signing corresponding to the 2-lift, then the signed adjacency matrix of Gσ ,
A(Gσ ) = A1 − A2. The lift associated to a specific signing σ will be denoted by Ĝσ or simply Ĝwhen the context is clear.

Lemma 2.2 ([18]). The spectrum of the lift Ĝ is the union (with multiplicities) of the spectrum of Gσ and G. Moreover, the
eigenvectors of Ĝ are of the two following forms:


f
f


where f is an eigenvector of G or


f

−f


where f is an eigenvector of Gσ .

Proof. Let f be an eigenvector of Gwith eigenvalue λ. Then

f
f


is an eigenvector of Âwith eigenvalue λ. Alternatively if f is

an eigenvector of A(Gσ ) with eigenvalue µ, then


f
−f


is an eigenvector of Â of eigenvalue µ. As Â is twice the size of either

A(G) or A(Gσ ), summing the multiplicities of A(G) and A(Gσ ) shows that every eigenvector of Â is of this form. �

The lemma above extends directly to the Laplacian matrices associated to G, Gσ and Ĝ using the fact that

D(G) = D(Gσ ), D(Ĝ) =


D(G) 0

0 D(G)


and L(Ĝ) =


D(G)− A1 A2

A2 D(G)− A1


.
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